期刊文献+

基于双模型融合的自适应目标跟踪算法 被引量:4

Adaptive target tracking algorithm based on fusion of two models
下载PDF
导出
摘要 针对目标跟踪过程中的光照变化、背景混乱和目标形变等问题,提出一种背景抑制的HS直方图和核相关滤波双模型融合的自适应跟踪算法。首先引入非线性核相关滤波跟踪模型;其次提出背景抑制的HS颜色直方图跟踪模型,通过分离亮度分量以减小光照干扰,并采用背景加权突出目标信息;然后提出一种自适应融合策略,根据目标与背景的HS特征相似度来动态调整两个模型融合权重,以降低背景混乱和目标姿态变化的影响;最后针对目标尺度变化问题,采用尺度金字塔估计策略进行解决。在多个公开数据集下的对比实验表明,与现有算法相比,提出的算法能更好地降低光照、背景混乱等复杂因素干扰,且达到了工程应用的实时性要求。 To deal with illumination variation,background clutters and object deformation,this paper proposed an adaptive tracking algorithm using the fusion of background suppressed HS histogram model and correlation filter model. Firstly,it introduced a non-linear kernelized correlation filter tracking model. Secondly,it proposed a background suppressed HS histogram tracking model. This model separated luminance component to reduce illumination interference and used a background weighted method to highlight object information. Furthermore,this paper proposed an adaptive fusion strategy. According to the HS similarity between object and each background patch,it adjusted the fusion weight of two models dynamically to reduce the influence of background clusters and pose variation. Finally,it used a scale pyramid estimation strategy to handle scale variations. Experimental results on public datasets demonstrate that,compared with other trackers,this algorithm performs better on complex factors,such as illumination variation and background clusters,and meets engineering application real-time requirements.
出处 《计算机应用研究》 CSCD 北大核心 2017年第12期3828-3833,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61379151) 创新群体资助项目(61521003) 国家科技支撑计划资助项目(2014BAH30B01) 青年科学基金资助项目(61601513)
关键词 目标跟踪 相关滤波 HS直方图 尺度金字塔 自适应融合 object tracking correlation filter HS histogram scale pyramid adaptive fusion
  • 相关文献

参考文献1

二级参考文献15

  • 1POSSEGGER H, MAUTHNER T, and BISCHOF H. In defense of color-based model-free tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2113-2120.
  • 2ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 1940-1947.
  • 3MEER P, RAMESH V, and COMANICIU D. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 4Van de WEIJER J, SCHMID C, and VERBEEK J. Learning color names from real-world Images[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007: 1-8.
  • 5Van de WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523.
  • 6KHAN F S, Van de WEIJER J, and VANRELL M. Modulating shape features by color attention for object recognition[J]. International Journal of Computer Vision, 2012, 98(1): 49-64.
  • 7KHAN F S, ANWER R M, Van de WEIJER J, et al. Color attributes for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 3306-3313.
  • 8DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090-1097.
  • 9COMANICIU D, RAMESH V, and MEER P. Real-time tracking of non-rigid objects using mean shift[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 2000: 142-149.
  • 10NING J, ZHANG L, ZHANG D, et al. Scale and orientation adaptive mean shift tracking[J]. IET Computer Vision, 2012, 6(1): 52-61.

共引文献21

同被引文献24

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部