期刊文献+

Preparation of Zinc-nickel-cobalt Ternary Oxide Nanosheets as Electrodes in Supercapacitors

Preparation of Zinc-nickel-cobalt Ternary Oxide Nanosheets as Electrodes in Supercapacitors
原文传递
导出
摘要 Novel zinc-nickel-cobalt ternary oxide nanosheets were successfully synthesized via an easy solvothermal method followed by calcination and were tailored to have different numbers of wrinkles by controlling the vohtrne ratio of the components in the mixed solvent. Nanosheets with more wrinkles yielded a large specific surface area(111.61 m2/g), which improved their electrochemical properties. The resulting products were characterized using a three-electrode system in 6 mol/L KOH electrolyte solution. With unique structures, the nanosheets with more wrinkles displayed a good capacitive behavior and an excellent specific capacitance retention of 97.18% after 2000 continuous charge-discharge cycles. Considering their high electrochemical performance and simple fabrication, we proposed that these unique zinc-nickel-cobalt oxide nanosheets are promising supercapacitor electrodes for energy storage applications. Novel zinc-nickel-cobalt ternary oxide nanosheets were successfully synthesized via an easy solvothermal method followed by calcination and were tailored to have different numbers of wrinkles by controlling the vohtrne ratio of the components in the mixed solvent. Nanosheets with more wrinkles yielded a large specific surface area(111.61 m2/g), which improved their electrochemical properties. The resulting products were characterized using a three-electrode system in 6 mol/L KOH electrolyte solution. With unique structures, the nanosheets with more wrinkles displayed a good capacitive behavior and an excellent specific capacitance retention of 97.18% after 2000 continuous charge-discharge cycles. Considering their high electrochemical performance and simple fabrication, we proposed that these unique zinc-nickel-cobalt oxide nanosheets are promising supercapacitor electrodes for energy storage applications.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第6期939-945,共7页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(Nos.51372124, 51572134).
关键词 Zinc-nickel-cobalt Ternary oxide Nanosheet WRINKLE Supercapacitor Zinc-nickel-cobalt Ternary oxide Nanosheet Wrinkle Supercapacitor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部