期刊文献+

基于物理模型与边界约束的低照度图像增强算法 被引量:8

Enhancement Algorithm for Low-lighting Images Based on Physical Model and Boundary Constraint
下载PDF
导出
摘要 针对低照度下图像降质严重的问题,该文提出一种基于边界约束与图像亮度的低照度图像增强算法。该算法首先通过改进的边界约束对伪雾图进行透射率估计,并对其进行优化;同时从伪雾图"雾"的形成原理出发,利用低照度图像的亮度分量进行伪雾图大气光值的估计;最后将增强后的伪雾图反转,即得到增强后的低照度图像。实验结果表明,针对低照度下的图像,该算法可以有效地提升对比度和亮度,过增强现象得到改善;效果优于对比算法,且复杂度低。 The aim of this paper is to achieve a low-lighting between fog image and inverted low illumination image. The image enhancement method by using the similarity transmittance estimation of the pseudo-fog image is estimated by the improved boundary constraint, and then it is optimized. Based on the formation principle of pseudo fog, the light intensity of pseudo fog map is estimated by using the brightness component of low illumination image. The enhanced pseudo fog image is reversed to obtain the enhanced low illumination image. Extensive experimental results using natural low-lighting images indicate that the proposed method perform better than contemporary algorithms in terms of several metrics, including the intensity, the contrast. The proposed algorithm can effectively suppress the wrong phenomenon caused by enhanced with low complexity.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第12期2962-2969,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60975008) 重庆市研究生科研创新项目(CYS17235)~~
关键词 低照度图像增强 伪雾图 边界约束 物理模型 Low-lighting image enhancement Pseudo-fog image Boundary constraint Physical model
  • 相关文献

参考文献7

二级参考文献99

  • 1魏津瑜,施鹤南,苏思沁.基于改进算法的自动种子区域生长图像分割[J].中南大学学报(自然科学版),2013,44(S2):308-312. 被引量:11
  • 2徐海荣,田联房,陈萍,王立非,叶广春,毛宗源.改进的区域生长算法在医学图像分割中的应用[J].生物医学工程研究,2005,24(3):187-190. 被引量:13
  • 3谢正祥,王志芳,刘燕欢,刘玉红,王颖,李虹.灰度谱分级平坦化理论[J].中国医学物理学杂志,2006,23(6):405-407. 被引量:19
  • 4冈萨雷斯.数字图像处理[M].3版.北京:电子工业出版社,2011.
  • 5NIVEDITTA T, SWAPNA D. A new method for color image quality assessment E J]. International Journal of Compute)" Applications, 2011, 15(2): 10-17.
  • 6ZHANGJ, LET M, ONC- S H, etal: No-refer- ence image quality assessment using structural ae tivity LJ]. Sig'nal Processing, 2011, 91(11) : 2575- 2588.
  • 7ZHU J Y, WANG N C. Image quality assessment by visual gradient similarityUC3. Image Process- ing, Wuhan, P.R. China: IEEE, 2012:919 933.
  • 8CUI X N, SHI Z Y, I.IN J A, et al: The research of image quality assessment methods [J]. Physics Procedia, 2012, 25:485 491.
  • 9()UNI S, ZAGROUBA E, CHAMBAH M, etal: No-reference image semantic quality approach using neural network C. Signal Processing and InJ'r- mation Technology, Ariana, P.R. Tunisia: IS- SPIT, 2011:106 113.
  • 10MITTAI. A, MURALIDHAR G S, GHOSH J, et al: Blind image quality assessment without human training using latent quality factorsEC. Signal Pro- cessing Letters, TX, USA: IEEE, 2012: 75-78.

共引文献116

同被引文献58

引证文献8

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部