期刊文献+

新型CH5光伏逆变器共模漏电流抑制研究 被引量:10

Research on Common-mode Leakage Current Suppression for a Novel CH5 PV Inverter
下载PDF
导出
摘要 漏电流抑制是非隔离型光伏系统需要解决的关键问题。该文首先分析了传统CH4光伏逆变器的工作原理,建立了系统共模回路模型,分析了系统共模特性和漏电流抑制能力。然后提出一种新型CH5光伏并网逆变器,从原理和理论上证明了新拓扑具有抑制漏电流的优点,并提出新型一维空间矢量调制策略改善系统共模漏电流抑制能力,最后在TMS320F28335 DSP+EP4CE10E22C8 FPGA数字控制实验平台上对提出的CH5拓扑和传统CH4拓扑进行了对比实验研究,结果验证了提出方法的有效性。 Leakage current suppression is one of the key technical issues for the transformerless photovoltaic (PV) systems. Firstly, the conventional current source H4 (CH4) PV inverter was investigated in this paper. The operation principle and common mode loop model were analyzed. The common mode feature and leakage current suppression capability were discussed. Secondly, a new current source H5 (CH5) PV inverter topology was proposed. The theoretical analysis was derived to verify the advantages regarding the leakage current reduction. Also, a new one dimension space vector modulation was proposed to improve the common mode feature to reduce the leakage current. Finally, the experiments of both CH4 and proposed CH5 inverters were carried out on the TMS320F28335 DSP + EP4CE10E22C8 FPGA digital control platform. The experimental results verified the effectiveness of the proposed solution.
作者 郭小强
出处 《中国电机工程学报》 EI CSCD 北大核心 2017年第23期6988-6994,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(51677161) 河北省杰出青年基金项目(E2016203133)~~
关键词 非隔离型光伏系统 CH4逆变器 CH5逆变器 空间矢量调制 漏电流 transformerless PV system current source H4(CH4) inverter current source H5 (CH5) inverter space vectormodulation leakage current
  • 相关文献

参考文献1

二级参考文献30

  • 1Steigerwald R L, et al. Investigation of a family of power conditioners integrated into a utility grid[R]. United States: Sandia National Labs., Albuquerque, NM(USA),1981.
  • 2Baeberlin H. Evolution of inverters for grid connected PV-systems from 1989 to 2000[C]//Proceedings of 17th European Photovoltaic Solar Energy Conference. Munich, Germany, 2001: 426-430.
  • 3Xiao H P, Xie S J. Leakage current analytical model and application in single-phase transformerless photovottaic grid-connected inverter[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(4): 902-913.
  • 4Yang B, Li W H, Gu Y J, et al. Improved transformerless inverter with common-mode leakage current elimination for a photovoltaic grid-connected power system[J]. IEEE Transactions on Power Electronics, 2012, 27(2): 752-762.
  • 5Shen J M, Jou H L, Wu J C. Novel transformerless grid-connected power converter with negative grounding for photovoltaic generation system[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 1818-1829.
  • 6Gu Y J, Li W H, Zhao Y, et al. Transformerless inverter with virtual DC bus concept for cost-effective grid-connected PV power systems[J]. IEEE Transactions on PowerElectronics, 2013, 28(2): 793-805.
  • 7Wang H, Blaabjerg F. Reliability of capacitors for DC-link applications in power electronic converters : an overview[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3569-3578.
  • 8Wang H, Liserre M, Blaabjerg F. Toward reliable power electronics: Challenges, design tools, and opportunities [J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 17-26.
  • 9Song Y T, Wang B S. Survey on reliability of power electronic systems[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 591-604.
  • 10Wu B, Pontt J, Rodrignez J, et al. Current-source converter and cycloconverter topologies for industrial medium-voltage drives[J] . IEEE Transactions on Industrial Electronics, 2008, 55(7): 2786-2797.

共引文献21

同被引文献76

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部