期刊文献+

基于模糊C均值聚类法和多元线性回归理论的铣床热误差研究 被引量:7

Research on Thermal Error of Milling Machine Based on Fuzzy C Mean Clustering Method and Multiple Linear Regression Theory
下载PDF
导出
摘要 为了降低铣床主轴旋转受温度影响而产生的位移变形量,提高铣床对零件的加工精度,采用了模糊C均值聚类法和多元线性回归理论对铣床主轴的热误差进行建模,实现铣床主轴加工误差值最小化;分析了模糊C均值聚类法筛选最优值的迭代过程,对铣床上不同位置的测量温度值进行分组,筛选出每组的最优温度值;采用多元线性回归理论,对铣床热误差理论预测模型进行了推导,通过实验验证多元线性回归理论所创建的热误差预测模型。实验结果表明:补偿前,铣床主轴Y方向和Z方向受温度影响产生的热误差最大值分别为45.0μm和28.0μm;补偿后铣床主轴Y方向和Z方向受温度影响产生的热误差最大值分别为3.2μm和3.8μm,误差范围都在4μm以内。采用模糊C均值聚类法和多元线性回归理论对铣床热误差进行补偿,铣床主轴运转受温度影响所产生的误差明显降低,从而提高了主轴定位精度。 In order to reduce the displacement deformation caused by the temperature effect on the spindle of the milling machine, to improve the machining accuracy of machine, the fuzzy C mean clustering method and multiple linear regression theory are used to model the thermal error of the spindle of the milling machine to realize minimized machining error of the spindle. The iterative process of selecting the optimal value of the fuzzy C mean clustering method was analyzed, the temperature value of different positions on the milling machine was divided into groups, and the optimal temperature value of each group was selected. By using the multiple linear regression theory, the thermal error theoretic prediction model of the milling machine was deduced, and the thermal error prediction model established by the multiple linear regression theory was verified by the experiment. The experimental results show that the temperature effect generated before the compensation, a milling spindle in Y and Z directions of thermal error maximum value respectively are 45.0 μm and 28. 0 μm; after compensation, milling machine spindle in Y and Z directions by temperature thermal error maximum value respectively are 3.2 μm and 3.8 μm, and error bounds are less than 4μm. Using fuzzy C means clustering method and multiple linear regression theory to compensate the thermal error of the milling machine, the error caused by the temperature influence on the main spindle of the milling machine is obviously reduced, thus improving the positioning accuracy of the spindle.
出处 《机床与液压》 北大核心 2018年第1期32-35,共4页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51205067)
关键词 铣床 模糊C均值聚类法 多元线性回归 热误差 Milling machine Fuzzy C mean clustering method Muhiple linear regression Thermal error
  • 相关文献

参考文献6

二级参考文献47

  • 1李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 2李永祥,杨建国,郭前建,王秀山,沈金华.数控机床热误差的混合预测模型及应用[J].上海交通大学学报,2006,40(12):2030-2033. 被引量:28
  • 3RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-a review: Part II: Thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1257-1284.
  • 4YANG S, YUAN J, NI J. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network[J]. International Journal of Machine Tools and Manufacture, 1996, 36(4): 527-537.
  • 5MIZE C D, ZIEGERT J C. Neural network thermal error compensation of a machining center[J]. Precision Engineering, 2000, 24(4): 338-346.
  • 6YANG Hong, NI Jun. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 455-465.
  • 7SHEN Jinhua, YANG Jianguo. Application of partial least squares neural network in thermal error modeling for CNC machine tool[J]. Key Engineering Materials, 2009, 392: 30-34.
  • 8潘淑微.数控车床主轴热误差快速辨识及补偿技术研究[D].杭州:浙江大学,2006.
  • 9Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools--a review part II: thermal errors [ J ]. International Journal of Machine Tools and Manufacture, 2000, 40(9) : 1 257 - 1 284.
  • 10Wu Hao, Zhang Hongtao, Guo Qianjian. Thermal error optimization modeling and real-time compensation on a CNC turning center [ J ]. Journal of Materials Processing Technology, 2008, 207 (1 -3) : 172 -179.

共引文献118

同被引文献62

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部