期刊文献+

熔丝沉积成型中最优放置方向选择算法

Optimal printing direction selection in fused deposition modeling
下载PDF
导出
摘要 在熔丝沉积成型制造中,调整物体放置方向可以改善制造后模型表面精确度,并能有效减少打印耗材和打印时间.但是现有最优放置角度算法很少兼顾这三因素.文中在考虑这三因素的基础上,同时分析人们对显著特征区域精细程度主观观感的不同,以及去除支撑时对模型的损害,提出了支撑体积耗材、模型表面打印耗材、打印时间、模型表面精细度、模型表面显著特征加权精细度、支撑覆着表面积等6项成型指标与放置角度的关系函数,并根据这6项成型评价指标函数构造最优放置角度目标函数;最后,求解最优化目标函数以获取最优放置角度.实验结果表明,该算法可有效计算各种条件下的物体最优放置角度,优化了制造物体表面的精确度,节约了打印耗材和打印时间,避免了部分后处理对模型造成的损害. In Fused Deposition Modeling (FDM) manufacture, adjustment of the object printing direction can improve the surface accuracy of the manufactured model, and can effectively reduce the printing time and printing material. However, the existing algorithm seldom takes account of all these factors. Considering these three factors and analyzing the people's subjective perception of the precision of the salient features and the damage caused by removal of the supporting, we propose the relationship functions among printing direction, support structure material, model surface printing supplies, printing time, model surface accuracy, salient features of precision and the processing cost of the model. According to these functions of the six evaluation indexes, the optimal printing direction objective function is constructed, and is solved to obtain the optimal printing direction. Experimental results show that the algorithm can be used to calculate the optimal printing direction of the object in various conditions, optimize the accuracy of the surface of the object, save the printing material and printing time, and avoid the damage caused by the post processing.
作者 魏潇然
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2018年第1期99-105,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61373117)
关键词 快速成型 熔丝沉积成型 打印放置方向 rapid prototyping fused deposition modeling(FDM) printing direction
  • 相关文献

参考文献2

二级参考文献73

  • 1(美)胡迪·利普森,梅尔芭·库曼.赛迪研究院专家组译.3D打印:从想象到现实.北京:中信出版社,2013.
  • 2Pandey P M, Reddy N V, Dhande S G. Slicing procedures in layered manufacturing: A review. Rapid Prototyping Journal, 2003, 9(5) .. 274-288.
  • 3Dolenc A, Mikel/ I. Slicing procedures for layered manufac- turing techniques. Computer-Aided Design, 1994, 26 (2) : 119-126.
  • 4Sabourin E, Houser S A, Bohn J H. Adaptive slicing using stepwise uniform refinement. Rapid Prototyping Journal, 1996, 2(4): 20-26.
  • 5Tyberg J, Bohn J H. Local adaptive slicing. Rapid Prototy- ping Journal, 1998, 4(3): 118-127.
  • 6Sabourin E, Houser S A, Bohn J H. Accurate exterior, fast interior layered manufacturing. Rapid Prototyping Journal, 1997, 3(2): 44-52.
  • 7Tata K, Fadel G, Bagchi A, Aziz N. Efficient slicing for layered manufacturing. Rapid Prototyping Journal, 1998, 4(4): 151-167.
  • 8Cormier D, Unnanon K, Sanii E. Specifying non-uniform cusp heights as a potential aid for adaptive slicing. Rapid Prototyping Journal, 2000, 6(3) : 204-212.
  • 9Pandey P M, Reddy N V, Dhande S G. Real time adaptive slicing for fused deposition modelling. International Journal of Machine Tools and Manufacture, 2003, 43(1): 61-71.
  • 10Jamieson R, Hacker H. Direct slicing of CAD models for rapid prototyping. Rapid Prototyping Journal, 1995, 1 (2) : 4-12.

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部