期刊文献+

面向不确定数据的概率障碍k聚集最近邻查询 被引量:2

Probabilistic Obstacle k Aggregate Nearest Neighbor Query on Uncertain Data
下载PDF
导出
摘要 针对现有方法无法有效处理不确定数据的障碍k聚集最近邻查询问题的不足,提出了基于不确定Voronoi图的概率障碍k聚集最近邻查询(probabilistic obstacle k aggregate nearest neighbor query,POk ANN)方法。该方法分为3个阶段,分别是查询点集处理阶段、过滤阶段和精炼阶段。在处理阶段,计算查询点集的最小覆盖圆圆心q,为剪枝做准备。过滤阶段针对3种聚集函数设计了不同的过滤算法,去除不可能成为结果的数据点进而得到候选集合。精炼阶段将候选集合中概率值大于给定阈值的k个数据点集合存入结果集合并返回给用户。理论研究和实验表明,所提出的方法在概率障碍k聚集最近邻查询方面有明显的优势。 According to the shortage that the existing method cannot handle the obstacle k aggregate nearest neighbor queries on uncertain data, this paper proposes a probabilistic obstacle k aggregate nearest neighbor query(POk ANN)method based on the uncertain Voronoi diagram. The method consists of three phases, which are processing, pruning and refining. The processing phase is to process the minimum covered circle of the query points set which is prepared for the pruning phase. Different pruning algorithms are proposed for three aggregate functions in pruning phase. The data points that must not be the answer are pruned and the candidate set is obtained. In refining phase,the preceding k data points in the candidate set whose probabilities are greater than the given threshold are stored into the result set and return to the user. The theoretical results and experimental results show that the method proposed in this paper has obvious advantages on probabilistic obstacle k aggregate nearest neighbor queries.
出处 《计算机科学与探索》 CSCD 北大核心 2018年第2期231-240,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61370084 黑龙江省自然科学基金No.F201302 黑龙江省教育厅科学技术研究项目No.12531z004~~
关键词 不确定数据 不确定Voronoi图 障碍 k聚集最近邻 uncertain data uncertain Voronoi diagram obstacle k aggregate nearest neighbor
  • 相关文献

参考文献6

二级参考文献59

  • 1卢炎生,许浒,潘鹏.约束的移动对象最近邻轨迹查询[J].华中科技大学学报(自然科学版),2007,35(2):57-60. 被引量:1
  • 2Zhang J, Zhu M, Papadias D, Tao Y. Location-based spatial queries//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. New York, USA, 2003:443-454.
  • 3Roussopoulos N, Kelley S, Vincent F. Nearest neighbor queries//Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data. New York, USA, 1995: 71- 79.
  • 4Gao Y, Zheng B, Chen Get al. Continuous visible nearest neighbor query processing in spatial databases. VLDB Journal, 2010, 20(3): 371- 396.
  • 5Sharifzadeh M, Shahaloi C. The spatial skyline queries//Proceedings of the VLDB. Seoul, Korea, 2006:751-762.
  • 6Lee K C, Lee W C, Zheng B et al. Z-SKY: An efficient skyline query processing framework based on Z-order. VLDB Journal, 2010, 19(3): 333-362.
  • 7Stanoi I, Agrawal D, Abbadi A E. Reverse nearest neighbor queries for dynamic databases//Proceedings of ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. 2000: 44-53.
  • 8Tao Y, Papadias D, Lian X. Reverse kNN search in arbitrary dimensionality//Proceedings of the VLDB. Toronto, Canada, 2004:744-755.
  • 9Sharifzadeh M, Shahabi C. VoR-Tree: R-trees with voronoi diagrams for efficient proeessing//Proceedings of the VLDB. Singapore, 2010, 1231-1242.
  • 10Wu W, Yang F, Chan C Yet al. Finch: Evaluating reverse k-nearest-neighbor queries on location data//Proceedings of the VLDB. Auckland, New Zealand, 2008:1056-1067.

共引文献25

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部