摘要
泡沫金属因其三维结构及优良导电性,使其作为电芬顿阴极开始引起学者关注。选择泡沫铜为阴极、石墨棒为阳极,搭建微孔曝气均匀的玻璃反应器,提高体系传质效率,并通过响应面探索体系产H_2O_2和·OH的机理。用响应面设计3因素(pH、电流、Fe^(2+)初始浓度)3水平实验,得到体系产H_2O_2和·OH与3种因素之间的非线性回归方程,得到最优条件:当pH=2、电流0.25 A、Fe^(2+)初始浓度为15μmol·L^(-1)时H_2O_2产量最大,为457.27μmol·L^(-1);当pH=2、电流0.25 A、Fe^(2+)初始浓度为20μmol·L^(-1)时·OH产量最多,可达18.56μmol·L^(-1)。根据方差分析,二次模型显著性很高(R_(H_2O_2)~2=0.977 8,R_(·OH)~2=0.964 2),能够很好地模拟实验结果。通过铜溶出实验分析得出铜溶出量在0.4~1.8 mg·L^(-1)之间,符合现行污水排入城镇下水道水质标准(CJ 343-2010)。
Foam-metal used as cathode in electro-Fenton (EF) has attracted attention recently due to it three- dimensional structure and good conductivity. In this study, copper-foam and graphite rod were used as cathode and anode, respectively. Moreover, micro-porous aeration glass reactor was designed, aiming for improving the low oxygen mass transfer rate in the EF configuration. The mechanism involved electro-generated active oxygen species (H202 and ·OH) was investigated by response surface modeling method. The effect of the different pa- rameters affecting the performance of active oxygen species generation was investigated, including pH, current density and initial ferrous concentration. Response surface modeling method, more specifically, Box-Behnken design (BBD) was used to optimize the above-mentioned parameters for active oxygen species generation and then to put forward polynomial models between these parameters and active oxygen species. Results show that significant polynomial models were obtained (R2H2O(2 = 0. 977 8,R2. on = 0.964 2) and optimal conditions was ob- tained from BBD were shown as follows :pH = 2, ferrous concentration = 15 μmol· L-1 and current = 0.25 A for H2O2 generation, while pH =2, ferrous concentration=20 μmol· L-1 and current = 0.25 A for hydroxyl radicals generation. The copper concentration released from copper-foam cathode ranged from 0.4 to 1.8 mg· L-I, lowering than the standard concentration (CJ 343-2010).
出处
《环境工程学报》
CAS
CSCD
北大核心
2018年第1期93-101,共9页
Chinese Journal of Environmental Engineering
基金
城市水资源与水环境国家重点实验室自主课题(HCK201708)
国家重点研发计划项目(2016YFC0401102)
关键词
电化学
自由基
优化设计
泡沫铜
响应面模型
过氧化氢
electrochemistry
radical
optimization design
cupper foam
response surface modeling
hydrogenperoxide