期刊文献+

数字孪生及其应用探索 被引量:898

Digital twin and its potential application exploration
下载PDF
导出
摘要 数字孪生是一种集成多物理、多尺度、多学科属性,具有实时同步、忠实映射、高保真度特性,能够实现物理世界与信息世界交互与融合的技术手段。随着数字孪生车间概念的提出,数字孪生在智能制造中的应用潜力得到越来越多的关注。分析了数字孪生在企业应用和理论研究上的进展,基于前期提出的数字孪生的五维结构模型,提出数字孪生驱动的6条应用准则,探索了数字孪生驱动的14类应用设想与实施过程中所需突破的关键问题与技术,为未来开展数字孪生的进一步落地应用提供理论和方法论参考。 Digital twin,as a technology of integrating multi-physics,multi-scale and multidisciplinary attributes,characterized by real-time synchronization,faithful mapping and high fidelity,could realize interaction and integration between physical space and virtual world.At present,digital twin had received great attention from academics and enterprises worldwide.With the advent of Digital Twin Shop-floor(DTS),digital twins were gained more and more attention on the potential of digital twin in smart manufacturing.The present situation of digital twin in enterprise application and theoretical research was discussed.Based on five-dimensional structure models of digital twin,six application principles were presented.On this basis,fourteen typical application of digital twin and their concepts and key scientific problems or technologies were explored.Which could provide theoretical and methodological reference for engineering practice of digital twin in the future.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2018年第1期1-18,共18页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金优秀青年基金资助项目(51522501)~~
关键词 数字孪生 数字孪生模型 应用准则 数字孪生应用 智能制造 digital twin digital twin model application principle digital twin application smart manufacturing
  • 相关文献

参考文献5

二级参考文献28

  • 1范玉青.基于模型定义技术及其实施[J].航空制造技术,2012,55(6):42-47. 被引量:40
  • 2谭杰,赵昼辰,何伟,葛平,张晓华,王峥.基于RFID的生产线物料监控系统的设计与应用[J].计算机应用研究,2006,23(7):119-120. 被引量:15
  • 3BREWER A, SLOAN N, LANDERS T L. Intelligent tracking in manufacturing[J]. Journal of Intelligent Manufacturing, 1999, 10(3-4): 245-250.
  • 4LI Zhekun, GADH R, PRABHU B S. Applications of RFID technology and smart parts in manufacturing[C]//ASME 2004 International DesignEngineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2004: 123-129.
  • 5TAKARAGI K, USAMI M, IMURA R, et al. An ultra small individual recognition security chip[J]. IEEE Micro, 2001, 21(6): 43-49.
  • 6MUNAWAR S A, KAPADI M D, PATWARDHAN S C, et al. Integration of planning and scheduling in multi-site plants: Application to paper manufacturing[J]. Computer Aided Chemical Engineering, 2005, 20: 1621-1626.
  • 7HUANG G Q, WRIGHT P K, NEWMAN S T. Wireless manufacturing: A literature review, recent developments, and case studies[J]. International Journal of Computer Integrated Manufacturing, 2009, 22(7): 579-594.
  • 8HUANG G Q, QU T, FANG M J, et al. RFID-enabled gateway product service system for collaborative manufacturing alliances[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1): 465-468.
  • 9BRINTRUP A, RANASINGHE D, MCFARLANE D. RFID opportunity analysis for leaner manufacturing[J]. International Journal of Production Research, 2010, 48(9): 2745-2764.
  • 10ZHANG Y F, QU T, HO O K, et al. Agent-based smart gateway for RFID-enabled real-time wireless manufacturing[J]. International Journal of Production Research, 2011, 49(5): 1337-1352.

共引文献989

同被引文献7109

引证文献898

二级引证文献5239

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部