期刊文献+

一类多日均衡满意度的旅行规划算法 被引量:1

Balancing travel satisfaction algorithm for multi-day trip planning
下载PDF
导出
摘要 基于位置的服务是确定移动用户所在位置并根据位置来提供的一种服务,其中,旅行规划是众多服务应用中的热点之一.通过基于位置的服务,人们可以根据自己的偏好制订不同的旅行规划.然而,在大多数研究中,旅行规划只关注于在所有兴趣点中制订一条符合旅行要求的路线.当游客决定在所在城市游玩多日时,这些研究所制订的路线给游客所带来的旅行满意度就会逐天递减,不符合多日旅程线路规划的制订.为了提高游客旅行时多日旅行满意度的稳定性问题,将天数因素作为多日旅行规划的参数之一,通过获取兴趣点集合的相关信息,如位置、评分、类别等,构建兴趣点网络模型,利用启发式算法得出最佳的路线,制订有效的多日旅行规划.实验结果证明,所提出的算法可以高效地得到多条旅行均衡的高质量旅行路线. Location-based service is a kind of service that obtains the location of mobile user and provides it according to location. Among them, one of the active topics is trip planning. People can make different trip planning to meet their multiple requirements by location-based service. However, in most studies, trip planning only focus on searching one route in many locations according to user's demands. When people are trying to visit the city more than one day, the travel satisfaction of the routes provided by previous researches would reduce by day. Hence, the previous work cannot meet the requirement of multi-day trip planning. To improve the satisfaction stability of multi-day trip planning, we use trip day as one of the multi-day travel planning parameters. We acquire points of interest (POIs) information (e.g., location, scoring, category, etc.) and construct a POI network model, obtain optimal trip routes through heuristic algorithm, develop an effective multi-day travel planning. The experimental results demonstrate that our proposed method can plan a mul t i - day t r i p wi t h h ig h q u a l i t y a n d m o re b a la n c e d r o u te .
作者 徐侃 郑骏
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期52-62,共11页 Journal of East China Normal University(Natural Science)
关键词 多日旅行规划 基于位置服务 普适计算 multi-day trip planning location-based service ubiquitous computing
  • 相关文献

参考文献1

二级参考文献18

  • 1Hariharan R, Hore B, Li C, Mehrotra S. Processing spatial keyword (sk) queries in geographic information retrieval sys- terns//Proceedings of the 19th International Conference on Scientific and Statistical Database Management. Banff, Canada, 2007: 16.
  • 2Felipe I D, Hristidis V, Rishe N. Keyword search on spatial databases//Proceeding of the 24th International Conference on Data Engineering. Cancun, Mexico, 2008:656-665.
  • 3Cong Gao, Jensen C S, Wu D. Efficient retrieval of the top-k most relevant spatial Web objects. Journal Proceedings of VLDB Endowment, 2009, 2(1): 337-348.
  • 4Cao Xin, Cong Gao, Jensen C S, Ooi B C. Collective spatial keyword querying//Proeeedings of the 2011 ACM SIGMOD International Conference on Management of Data. Athens, Greece, 2011:373-384.
  • 5Zhang Dong-Xiang, Chee Yeow-Meng, Mondal A, Tung Anthony K H. Keyword search in spatial databases: To- wards searching by document//Proceedings of the 25th Inter- national Conference on Data Engineering. Shanghai, China, 2009:688-699.
  • 6Li Fei-Fei, Cheng Di-Han, Hadjieleftheriou M, Kollios G, Teng Shang Hua. On trip planning queries in spatial databas- es//Proceedings of the 9th International Conference on Ad vances in Spatial and Temporal Databases. Angra dos Reis, Brazil, 2005:273-290.
  • 7Chen Hai-Quan, Ku Wei Shinn, Sun Min Te, Zimmermann R. The partial sequenced route query with traveling rules in road networks. Geoinformatica, 2011, 15(3) :541-569.
  • 8Kanza Y, Safra E, Sagiv Y, Doytsher Y. Heuristic algo- rithms for route search queries over geographical data//Pro- ceedings of the 16th ACM SIGSPATIAL International Con- ference on Advances in Geographic Information Systems. Irvine, CA, USA, 2008:11.
  • 9Sharifzadeh M, Kolahdouzan M, Shahabi C. The optimal se quenced route query. The International Journal on Very Large Data Bases, 2008, 17(4):765-787.
  • 10Baker KA, Fishburn P, Roberts FS. Partial orders of dimen- sion 2. Networks, 1971, 2(1): 11-28.

共引文献8

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部