期刊文献+

基于l_1/l_2的高低阶全变差运动模糊图像盲复原方法 被引量:15

Blind Recovery Method of Motion Blurred Image Based on Combining l_1/l_2 Norm with High Order and Low Order Total Variation
原文传递
导出
摘要 为了实现运动模糊图像的盲复原,提出了一种基于l_1/l_2的高低阶全变差图像盲复原方法。利用具有更强稀疏表达能力的l_1/l_2范式正则化先验项,加入高低阶混合全变差正则化模型。高阶全变差正则化模型可以抑制图像非边缘部分可能出现的阶梯及振铃效应,低阶全变差正则化模型可以保护自然图像的边缘稀疏特性。分别给出了清晰图像和模糊核的求解算法,两者的求解过程采用分裂Bregman迭代算法将目标函数分裂成多个子问题进行优化求解。实验结果表明,提出的方法能够很好地抑制振铃效应并保护图像的边缘细节,通过与其他盲复原方法进行比较,在视觉质量与客观质量评价上均说明本文算法具有更好的稳健性。 In order to realize the blind recovery of motion blurred image, we present a blind recovery method based on combining l1/l2 norm with the high order and low order total variation. We adopt the ratio of l1/l2 norm regularization prior item which has high sparse expression ability, and add the high order and low order total variation regularization item. High order total variation regularization model can suppress the ladder effect and ringing effect that may occur in the region of non-edges. Low order total variation regularization model can protect the sparse feature of natural image edges. The solution of high-quality image and the solution of blurred kernel are given respectively, both of which employing Bregman iterative algorithms to split the objective function into multiple sub-problems. The experimental results show that the proposed method can restrain ringing effect and protect the image edge details. The robustness of proposed algorithm is better in the visual quality and objective quality evaluation comparing with other methods for blind recovery of motion blurred images.
作者 王灿 杨帆 李靖 Wang Can;Yang Fan;Li Jing(School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China;Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第4期191-199,共9页 Laser & Optoelectronics Progress
基金 河北省自然科学基金(E2016202341) 河北省高等学校科学技术研究项目(BJ2014013) 教育部人文社会科学研究规划基金(15YJA630108)
关键词 图像处理 图像盲复原 去模糊 l1/l2范数 高低阶全变差 分裂Bregman迭代 image processing image blind recovery deblurring l1/l2 norm combining high order and low ordertotal variation split Bregman iteration
  • 相关文献

参考文献7

二级参考文献59

  • 1张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 2孙雷,张艳,徐青,张春美.改进APEX算法在图像增强中的应用[J].测绘科学技术学报,2007,24(1):51-53. 被引量:5
  • 3谢盛华,张启衡,宿丁.基于APEX方法的改进图像复原算法[J].激光与红外,2007,37(2):185-188. 被引量:8
  • 4韩玉兵,吴乐南,张冬青.基于正则化处理的超分辨率重建[J].电子与信息学报,2007,29(7):1713-1716. 被引量:11
  • 5Levin A, Weiss Y,Durand F,et al.Understanding and evaluating blind deconvolution algorithms[C]//Proc of the IEEE Conference on Computer Vision and Pattern Recognition,2009.
  • 6Xu L, Jia J.Two-phase kernel estimation for robust motion deblurring[C]//Proceedings of the Europeon Conference on Computer Vision,2010.
  • 7Chen J, Tang C K.Robust dual motion deblurring[C]//Proc of the IEEE Conference on Computer Vision and Pattern Recognition, 2008.
  • 8Rav-Acha A, Pclcg S.Two motion-blurred images arc better than one[J].Pattcm Recognition Letters, 2005,26: 311-317.
  • 9Joshi N, Kang S B, Zitnick C L, et al.Image deblurring using inertial measurement sensors[J].ACM Transactions on Graphics, 2010,29(4).
  • 10Richardson W.Bayesian-based iterafive method of image restoration[J]. Journal of the Optical Society of America, 1972,62( 1 ) : 1917-1983.

共引文献59

同被引文献129

引证文献15

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部