期刊文献+

浅析n维欧氏空间上Borel集的构造

A Brief Analysis on the Construction of Borel Sets in n Dimensional Euclidean Space
下载PDF
导出
摘要 针对n维欧氏空间上Borel集的构造问题,提出几个具有测度论特色的结果加以详细讨论.利用n维欧氏空间中左端点形如mi/2~l(其中mi为整数,l为正整数),且长度均为1/2~l的那些左开右闭区间形成的集类A_l的优良结构,结合实数域上的区间划分、不等式与拓扑技巧,证明了A_l是n维欧氏空间的可数无限划分,且随着l变得越大A_l变得越精细,对n维欧氏空间中开集中的任意一点来说,当l充分大时,A_l中包含该点的那个成员必定包含于该开集中;在此基础上用反证法证明了n维欧氏空间中任一开集都可表示成至多可数无限多个两两不交的n维左开右闭区间之并;最后以此结论为工具,介绍了n维欧氏空间上Borel代数的几个较小生成元. Focusing on the construction of Borel sets in n dimensional Euclidean space,we propose several results of measure theory features for detailed discussion. Utilizing the good structure of set class A_l which consists of those n dimensional left-open and right-closed intervals such that left end point is mi/2l(where miis integer and l is positive integer) and length of each side is 1/2l,combined with partition of real line,inequality techniques and topological techniques, we first prove that Al is a countably infinite partition of n dimensional Euclidean space for each positive integer l,and as l gets larger,Al gets finer,and for each point in each open subset of the n dimensional Euclidean space,the member in Al who contained the point must be contained by the open subset when l is sufficiently large. Then,based on the previous results we prove that every open subset in n dimensional Euclidean space can be expressed as the union of at most countably infinite n dimensional left-open and right-closed intervals by way of contradiction. Last,arming with this theorem,we introduce some generators for the Borel algebra of n dimensional Euclidean Space.
作者 曾小林 黄一缘 ZENG Xiao-lin;HUANG Yi-yuan(School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China;Beijing Normal University, School of Mathematical Sciences, Beijing 100875, China)
出处 《重庆工商大学学报(自然科学版)》 2018年第3期55-59,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金(11301568) 重庆工商大学科研启动项目(2012 56 10)
关键词 N维欧氏空间 Borel代数 较小生成元 n dimensional Euclidean space Borel algebra generator
  • 相关文献

参考文献3

二级参考文献13

  • 1WALTER R. Real and complex analysis[M]. Beijings China Machine Press,2004 : 36.
  • 2周明强.实变函数论[M].北京:北京大学出版社,2001:36-70.
  • 3张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.226.
  • 4夏道行,吴卓人,严绍宗,等.实变函数与泛函分析[M].北京:人民出版社,1979.
  • 5程其襄;张奠宙;魏国强.实变函数与泛函分析基础[M]北京:高等教育出版社,2010.
  • 6夏道行;严绍宗.实变函数与泛函分析[M]北京:高等教育出版社,2010.
  • 7郑维行;王声望.实变函数与泛函分析概要[M]北京:高等教育出版社,2004.
  • 8胡适耕.实变函数[M]{H}北京:高等教育出版社,2009.
  • 9徐森林.实变函数论[M]北京:高等教育出版社,2001.
  • 10周民强.实变函数论[M]{H}北京:北京大学出版社,2001.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部