期刊文献+

一种抗遮挡核相关滤波目标跟踪算法 被引量:6

A kernelized correlaton filters with occlusion handling
原文传递
导出
摘要 针对核相关滤波器(KCF)算法在目标遮挡情况下易导致跟踪失效的问题,提出了一种抗遮挡核相关滤波(KCF)跟踪算法。该算法首先依据目标响应的峰值旁瓣比来确定滤波目标模型的更新方式,形成了目标模型自适应更新的KCF算法;其次,在目标的训练阶段分别提取目标的HOG和LBP特征直方图,并对其进行特征融合。对比试验结果表明,该算法针对OTB-2013测试数据集中的20组非遮挡运动目标视频帧来评估本文算法,并与原KCF算法进行对比,该算法的跟踪精度和成功率分别提升了9.5%、24%;选择测试数据集中29组被遮挡的运动视频帧来评估本文的抗遮挡性,该算法在目标遮挡情况下的跟踪精度和成功率分别提升了19.9%、8%。实验结果表明该算法具有明显的抗遮挡跟踪能力。 As the kernelized correlation filter (KCF) tracking algorithm has poor performance in occlusion handling, this paper proposes a occlusion handling tracking algorithm based on KCF. Firstly we design an adaptive model updating strategy by utilizing the peak to sidelobe ratio (PSR) of the response maps. Then we extract histogram of oriented gradient (HOG) and local binary pattern LBP features and fuse them in the training stage. To verify the effectiveness of the proposed algorithm, we use the OTB-2013 benchmark to obtain 20 groups of video sequences without occlusion and 29 groups of occlusion video se- quences. Experimental results demonstrate that the precision and success rate without occlusion have been promoted by 9.5 % and 24.0 % respectively. Especially in occlusion handling case, the two parame- ters have been by 19.9% and 8% ,respectively.
作者 闫河 张杨 杨晓龙 王鹏 董莺艳 YAN He;ZHANG Yang;YANG Xiao-Long;WANG Peng;DONG Ying-yan(College of Computer Science and Engineering,Chongqing University of Technology, Chongqing 400054 ,Chin)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2018年第6期647-652,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金面上项目(61173184)资助项目
关键词 目标跟踪 特征融合 KCF 抗遮挡 模型更新 target tracking features fusion kernelized correlation filter (KCF) anti-occlusion modelupdate
  • 相关文献

参考文献7

二级参考文献76

  • 1LOWED G. Distinctive image features from scale- invariant keypoints [J]. International Journal of Computer Vision, 2004,60(2) :91-110.
  • 2DALAL N, TRIGGS 13. Histograms of oriented gradi- ents for human detection [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Confer- ence, 2005 : 886- 893.
  • 3WALK S, MAJER N, SCHINDLER K, et al: New features and insights for pedestrian detection[C]. Com- puter Vision and Pattern Recognition, IEEE Computer Society Conference, 2010 : 1030-1037.
  • 4WATANABE T, ITO S, YOKOI K. Co-occurrence histograms of oriented gradients for human detec- tion [J]. IPSJ Transactions on Computer Vision and Applications, 2010,2 : 39-47.
  • 5MAJI S, BERG A C, MALIK J. Classification u- sing intersection kernel support vector machines is efficient [C]. Computer Vision and Pattern Recog- nition, IEEE Computer Society Conference, 2008 ; 1-8.
  • 6FELZENSZWALB P F, GIRSHICK R B, MCALL- ESTER D. Cascade object detection with deformable part models [C]. Computer Vision and Pattern Rec- ognition, IEEE Computer Society Conference, 2010:2241-2248.
  • 7WANG X Y, HAN T X, YAN SH CH. An HOG- LBP human detector with partial occlusion handling [C]. Computer Vision, IEEE International Con- ference, 2009 : 32- 39.
  • 8ZHU Q, YEH M C, CHENG K T, et al: Fast human detection using a cascade of histograms of oriented gradients [C]. Computer Vision and Pat- tern Recognition, IEEE Computer Society Confer- ence, 2006:1491-1498.
  • 9PORIKLI F. Integral histogram., a fast way to ex tract histograms in Cartesian spaces [C]. Comput er Vision and Pattern Recognition, IEEE Comput er Society Conference, 2005 :829-836.
  • 10BILGIC B. Fast human detection with cascaded en- sembles [D]. Massachusetts Massachusetts Insti- tute of Technology,2010.

共引文献147

同被引文献21

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部