摘要
运用四次Diophantine方程的性质以及初等方法证明了:设p是素数,当p■1(mod 8)时,方程y^2=px(x^2-4)仅有正整数解(p,x,y)=(3,4,12),(7,16,168),(3,98,1680)(3,6,24),(11,198,9240).若p≡1(mod 8)时,方程y^2=px(x^2-4)至多有一组正整数解.指出了万飞文章中的错误,并利用初等方法巧妙得出了一些新的结论,改进了Wenguan Wu,Alain Togbe,Bo He,Shichun Yang等的解的个数的上界.
In this paper,the properties of quartic Diophantine equations and elementary method are used to prove: let p be a prime,when p 1(mod 8),(p,x,y) =(3,4,12),(7,16,168),(3,98,1680)(3,6,24),(11,198,9240) are the only positive integer solutions of equation y2= px(x2-4).If p≡1(mod 8),the equation y2= px(x2-4) has no more than a set of positive integer solutions. The essay points out the mistakes in the documentary by Wan Fei. And meanwhile,using primary methods,the author skillfully drew some new conclusions and imprve the upper bounds of the number of solutions in documentaries by Wenguan Wu,Alain Togb'e,Bo He,Shichun Yang.
作者
陈进平
CHEN Jinping(Department of Mathbematics and Finnance, Aba Teachers University, Wenchuan 623000, China;Danzhou Siyuan Senior High School, Danzhou 571700, China)
出处
《湖北民族学院学报(自然科学版)》
CAS
2017年第3期290-291,346,共3页
Journal of Hubei Minzu University(Natural Science Edition)
基金
海南省教育科学规划专项课题(QJH1251533)
海南省高考综合改革重点课题(QJZ13517016)
关键词
丢番图方程
解数
整数解
Diophantine equation
solution number
integer solution