期刊文献+

基于计算机视觉的森林火灾识别算法设计 被引量:27

Design of Forest Fire Identification Algorithm Based on Computer Vision
下载PDF
导出
摘要 为解决森林火灾监测系统中由于林火行为监测样本数据量大、维数多导致监测误报率高、实时性差等问题,提出一种基于计算机视觉的支持向量机算法进行森林火灾监测,提升识别精度,实现全天候林火自动监测预警。首先,获取图像进行预处理,并初步判别图像中是否存在烟火区域;然后,进行林火特征提取,训练样本生成特征向量,采用基于径向基核函数与多项式核函数的SVM算法进行烟火识别;最后,选取多功能森林防火机动巡查灭火装备为试验平台应用该算法进行试验验证。结果表明:所提出算法具有理想的森林火灾识别效果,识别准确率高达97.82%,并且可以与多功能森林防火机动巡查灭火装备通讯进行精确扑救,为森林防火装备智能化探索提出新思路。 In order to solve the problems of forest fire monitoring system,such as large amount of data, high dimension and poor real time, a support vector machine based on computer vision is proposed to monitor forest fire, improve the recognition accuracy and realize automatic monitoring and warning of all weather forest fire. First, the image is acquired for preprocessing, and it is initially determined whether there is smoke region or flame region in the image. Then, the characteristics of forest fire are extracted, and the sample is trained to generate feature vectors, and the SVM algorithm based on radial basis kernel function and polynomial kernel function is used for pyrotechnic identification. FinaUy,a multifunctional fore对fire-fighting equipment is selected as an experimental platform and the algorithm is used for experimental verification. The results show that the proposed algorithm has ideal forest fire identification effect, and the recognition accuracy rate is as high as 97.82%. It can carry out precise save and rescue with the multifunctional forest fire prevention mobile inspection fire-fighting equipment communication, and put forward new ideas for intelligent exploration of forest fire prevention equipment.
作者 刘凯 魏艳秀 许京港 赵永政 蔡志勇 Liu Kai;Wei Yanxiu;Xu Jinggang;Zhao Yongzheng;Cai Zhiyong(Forest Protection Institute of Heilongjiang Province,Harbin 150040;College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040)
出处 《森林工程》 2018年第4期89-95,共7页 Forest Engineering
基金 黑龙江省森林工业总局应用研究项目(sgzjY2015021)
关键词 计算机视觉 支持向量机 径向基函数 森林防火 Computer vision support vector machines radial basis function forest fire prevention
  • 相关文献

参考文献6

二级参考文献62

  • 1王执煜,张树军,孙佰成,姚伟东,魏金玲.无线视频技术在森林防火监控中的应用[J].林业机械与木工设备,2006,34(1):42-43. 被引量:5
  • 2王大鹏,王周龙,李德一.基于NDVI纹理的山东丘陵地区SPOT-5影像果园信息识别研究[J].测绘科学,2007,32(1):126-127. 被引量:9
  • 3陈立生,谢永华.森林防火视频监控系统的设计[J].林业劳动安全,2007,20(3):44-45. 被引量:4
  • 4安志伟 袁宏永 屈玉贵.数据采集在火焰闪烁频率的测量研究及分析中的应用.火灾科学,2000,9(2):43-47.
  • 5Rong J Z, Zhou D C, Yao W, et al. Fire flame detection based on GICA and target tracking[J]. Optics & Laser Technology, 2013,47: 283-291.
  • 6Borges P V K, Izquierdo E. A probabilistic approach for vi?sion-based fire detection in videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(5): 721- 731.
  • 7Li W R, Liu P X, Wang Y, et al. Early flame detection in video sequences based on D-S evidence theory[J]. Journal of Com?puters, 2013,8(3): 818-825.
  • 8Wang D C, Cui X N, Park E, et al. Adaptive flame detection using randomness testing and robust features[J]. Fire Safety Journal, 2013, 55: 116-125.
  • 9Hou X D, Zhang L Q. Dynamic visual attention: searching for coding length increments[C]//Proceedings of Annual Confer?ence on Neural Information Processing Systems. Cambridge: MIT Press, 2008: 681-688.
  • 10Rou X D, Harel J, Koch C. Image signature: highlighting sparse salient regions[J]. IEEE Transactions on Pattern Analy?sis and Machine Intelligence, 2012, 34(1): 194-20;1.

共引文献106

同被引文献221

引证文献27

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部