期刊文献+

在线平台知识付费研究综述 被引量:12

Review of Knowledge Payment on Online Platforms
下载PDF
导出
摘要 [目的/意义]为知识付费的发展和在线知识付费平台提供针对性的优化方案。[方法/过程]根据大量报告和文献调研对在线平台知识付费相关研究进行全面的分析与综合。[结果/结论]提出应从知识差异化、去中心化、版权保护正向激励以及知识价值链4个方面巩固知识付费模式的核心竞争力。 [Purpose/significance] The paper is to provide targeted optimizations for the development of knowledge payment and the knowledge payment platforms online. [Method/process] Through quantities of reports and documents research, the paper conducts a comprehensive analysis and synthesis on knowledge payment on online platforms. [Result/conclusion] It proposes that core competitiveness of knowledge payment could be consolidated from the aspects of knowledge differentiation, decentration, copyright protection of positive incentive and knowledge value chain.
作者 张杨燚 Zhang Yangyi(School of Information Management, Wuhan University, Wuhan Hubei 43007)
出处 《情报探索》 2018年第8期129-134,共6页 Information Research
关键词 知识付费 分享经济 认知盈余 知识价值链 knowledge payment sharing economy cognitive surplus knowledge value chain
  • 相关文献

参考文献21

二级参考文献116

  • 1Nam K K, Ackerman M S, Adamic LA. Questions in, knowledge in: a study of naver' s question answering community[A]/ /Proceedings of the 27th International Conference on Human Factors in Computing Systems [ C]. New York : ACM Press, 2009: 779-788.
  • 2Oh S. The relationships between motivations and answering strategies: An exploratory review of health answerers' behaviors in Yahoo I Answers [J]. Proceedings of the American Society for Information Science and Technology, 2011,48(1): 1-9.
  • 3Agichtein E, Castillo C, Donato D, et al. Finding high quality content in social media[A]//WSDM '08 Proceedings of the International Conference on Web Search and Web Data Mining[C]. New York:ACM,2008: 183-194.
  • 4Shah C, Pomerantz J. Evaluating and predicting answer qualityin community QA[A]/ /SIGIR ' 10 Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval[C]. New York: ACM,2010 :411-418.
  • 5Kim S, Oh S. Users' relevance criteria for evaluating answers in a social Q&A site[J]. Journal of the American Society for Information Science and Technology, 2009, 60( 4) : 716-727.
  • 6Jeon J, Croft W B, Lee J H, et al. A framework to predict the quality of answers with non-textual features[A]/ /SIGIR '06 Proceedings of the 29rd International ACM SIGIR Conference on Research and Development in Information Retrieval[C]. Washington: ACM, 2006:228-235.
  • 7Ko J, Si L, Nyberg E. A probabilistic framework for answer selection in question answering[A]//Proceedings of NAACL-HLT[C]. Rochester, NY: Association for Computational Linguistics, 2007: 524-531.
  • 8Jurczyk P, Agichtein E. Discovering authorities in question answer communitiesby using link analysis[A]//Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management[C].Lisboa:ACM,2007:919-922.
  • 9Liu J, Cao Y. Low-quality product review detection in opinion summarization[A]/ /Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)[C]. Prague,2007 :334-342.
  • 10Sian J, Liu Y,Agichtein E, et al. Finding the right facts in the crowd: Factoid question answering over social media [A]//lnternational World Wide Web Conference Committee. Proceedings of the 17th International Conference on World Wide Web[C]. Beijing: ACM, 2008: 467-476.

共引文献570

同被引文献109

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部