期刊文献+

基于子空间和直方图的多记忆自适应相关滤波目标跟踪算法 被引量:10

Object Tracking with Multiple Memory Learning and Adaptive Correlation Filter Based on Subspace and Histogram
下载PDF
导出
摘要 为了增强相关滤波算法(CF)在目标遮挡或背景干扰情况下跟踪的鲁棒性,提出基于子空间和直方图的多记忆自适应相关滤波目标跟踪算法.首先,针对CF使用的模板单一无法应对不同时期相邻帧目标表现的差异,提出利用随机更新策略学习多个目标模板,应对不同时期的目标变化.然后,针对不同的更新模板得到多个候选目标,利用子空间学习上一帧的表示系数,综合判断候选目标的准确性.同时,因为CF与子空间表示均利用模板判断跟踪结果,对背景杂乱等情况判断容易造成偏差,所以引入颜色直方图,利用统计特征作为独立的判断依据,增强算法对候选目标判断结果的准确性.在标准视频集上的实验表明,文中算法具备一定的抗遮挡及抗背景干扰能力. To enhance the tracking robustness of the correlation filter (CF) in occlusion and background clutter, an algorithm for object tracking with muhiple memory learning and adaptive correlation filter based on subspace and histogram is proposed. CF cannot cope with target appearance difference of adjacent frames in the different periods using a single template. A strategy of random updates is proposed to learn multiple target templates and adapt to the variation of target. Several candidate targets are obtained by random updates and the representation coefficients of the previous frame is learned by subspace structure to synthetically judge the accuracy of current candidates. Since CF and subspace representations are sensitive to background clutter, the color histogram is introduced to achieve complementary appearance representation. The statistical histogram is used as the independent judgment basis to improve the accuracy of the algorithm in judging the candidate target. The experimental results on video sequences demonstrate that the proposed algorithm has the ability of anti-occlusion and anti- background interference.
作者 冯棐 吴小俊 徐天阳 FENG Fei;WU Xiaojun;XU Tianyang(Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence,Jiangnan University,Wuxi 214122)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2018年第7期612-624,共13页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61672265 61373055) 江苏省教育厅科技成果产业化推进项目(No.JH10-28)资助~~
关键词 相关滤波器 多记忆学习 抗遮挡 子空间 统计直方图 Correlation Filter Multiple Memory Learning Anti-occlusion Subspace Statistical Histogram
  • 相关文献

参考文献4

二级参考文献17

  • 1POSSEGGER H, MAUTHNER T, and BISCHOF H. In defense of color-based model-free tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2113-2120.
  • 2ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 1940-1947.
  • 3MEER P, RAMESH V, and COMANICIU D. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 4Van de WEIJER J, SCHMID C, and VERBEEK J. Learning color names from real-world Images[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007: 1-8.
  • 5Van de WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523.
  • 6KHAN F S, Van de WEIJER J, and VANRELL M. Modulating shape features by color attention for object recognition[J]. International Journal of Computer Vision, 2012, 98(1): 49-64.
  • 7KHAN F S, ANWER R M, Van de WEIJER J, et al. Color attributes for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 3306-3313.
  • 8DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090-1097.
  • 9COMANICIU D, RAMESH V, and MEER P. Real-time tracking of non-rigid objects using mean shift[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 2000: 142-149.
  • 10NING J, ZHANG L, ZHANG D, et al. Scale and orientation adaptive mean shift tracking[J]. IET Computer Vision, 2012, 6(1): 52-61.

共引文献255

同被引文献40

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部