期刊文献+

基于颜色表示的尺度自适应实时目标跟踪

Scale Adaptive Real-time Object Tracking Based on Color Representation
下载PDF
导出
摘要 传统基于颜色表示的在线目标跟踪方法,倾向于跟踪与目标外观相似的区域,会因为尺度变化而导致漂移。针对该问题,结合干扰感知模型与背景对象模型,提出一种基于颜色表示的目标跟踪方法。通过干扰感知模型抑制干扰区域,利用背景对象模型将目标对象从周围背景中区分出来,并结合自适应尺度估计方法进行目标跟踪。实验结果表明,与STC和RVT跟踪方法相比,该方法在精度和鲁棒性方面表现更好。 In an online target tracking based on color representation,in order to solve target tracking,it tends to track the area that is similar to the tracking target, and the problem of drift caused by the change of target scale. In this paper,a target tracking method is obtained by combining the interference perception model and the background object model.The interference model can effectively suppress the interference area, and the background object model can distinguish the target object from the surrounding background. Furthermore,the adaptive scale estimation method is added. The experimental results show that,compared with STC tracking algorithm and RVT tracking method,the proposed method has better performance in precision and robustness.
作者 张志凡 谢世朋 傅鹏 ZHANG Zhifan;XIE Shipeng;FU Peng(School of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第7期225-229,共5页 Computer Engineering
基金 国家自然科学基金(11547155) 教育部-中国移动科研基金(MCM20150504) 江苏省科技重点研发计划-产业前瞻与共性关键技术项目(BE2016001-4) 南京邮电大学科研基金(NY214026 NY217035)
关键词 对象模型 尺度自适应 干扰感知模型 背景对象模型 颜色直方图 object model scale adaptation interference perception model object-background model color histogram
  • 相关文献

参考文献8

二级参考文献179

  • 1王圣男,郁梅,蒋刚毅.智能交通系统中基于视频图像处理的车辆检测与跟踪方法综述[J].计算机应用研究,2005,22(9):9-14. 被引量:80
  • 2李斌,史忠科.基于计算机视觉的行人检测技术的发展[J].计算机工程与设计,2005,26(10):2565-2568. 被引量:16
  • 3Steven M.统计信号处理基础-估计与检测理论[M].罗鹏飞,译.北京:电子工业出版社,2006.
  • 4Arulampalam M S. A Tutorial on Particle Filters for Online Nonlinear/Non-gaussian Bayesian Tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2): 174-188.
  • 5Bakhtari A, Mackay M, and Benhabib B. Active-vision for the autonomous surveillance of dynamic, multi-object environments[J]. Journal of Intelligent Robot System, 2009, 54(4): 567-593.
  • 6Vadakkepat P, Lim P, Desilva L, et al.. Multimodal approach to human-face detection and tracking[J]. IEEE Transactions on Industrial Electronics, 2008, 55(3): 1385-1392.
  • 7Matei B, Sawhney H, and Samarasekera S. Vehicle tracking across non-overlapping cameras using joint kinematic and appearance features[C]. The 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs 2011: 3465-3472.
  • 8Kalal Z, Mikolajczyk K, and Matas J. Tracking- learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
  • 9Yang Han-xuan, Shao Ling, Zhang Feng, et al.. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2012, 74(18): 3823-3831.
  • 10Kwon J and Lee K. Tracking of a non-rigid object via patch- based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009: 1208-1215.

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部