摘要
Manganese (Mn) is an essential catalytic metal in the Mn-cluster that oxidizes water to produce oxygen dur- ing photosynthesis. However, the transport protein(s) responsible for Mn2+ import into the chloroplast re- mains unknown. Here, we report the characterization ofArabidopsis CMT1 (Chloroplast Manganese Trans- porter 1), an evolutionarily conserved protein in the Uncharacterized Protein Family 0016 (UPFO016), that is required for manganese accumulation into the chloroplast. CMT1 is expressed primarily in green tissues, and its encoded product is localized in the inner envelope membrane of the chloroplast. Disruption of CMT1 in the T-DNA insertional mutant cmtl-1 resulted in stunted plant growth, defective thylakoid stacking, and severe reduction of photosystem II complexes and photosynthetic activity. Consistent with reduced oxy- gen evolution capacity, the mutant chloroplasts contained less manganese than the wild-type ones. In sup- port of its function as a Mn transporter, CMT1 protein supported the growth and enabled Mn2+ accumula- tion in the yeast cells of Mn2+-uptake deficient mutant (3smfl). Taken together, our results indicate that CMT1 functions as an inner envelope Mn transporter responsible for chloroplast Mn2+ uptake.
Manganese (Mn) is an essential catalytic metal in the Mn-cluster that oxidizes water to produce oxygen dur- ing photosynthesis. However, the transport protein(s) responsible for Mn2+ import into the chloroplast re- mains unknown. Here, we report the characterization ofArabidopsis CMT1 (Chloroplast Manganese Trans- porter 1), an evolutionarily conserved protein in the Uncharacterized Protein Family 0016 (UPFO016), that is required for manganese accumulation into the chloroplast. CMT1 is expressed primarily in green tissues, and its encoded product is localized in the inner envelope membrane of the chloroplast. Disruption of CMT1 in the T-DNA insertional mutant cmtl-1 resulted in stunted plant growth, defective thylakoid stacking, and severe reduction of photosystem II complexes and photosynthetic activity. Consistent with reduced oxy- gen evolution capacity, the mutant chloroplasts contained less manganese than the wild-type ones. In sup- port of its function as a Mn transporter, CMT1 protein supported the growth and enabled Mn2+ accumula- tion in the yeast cells of Mn2+-uptake deficient mutant (3smfl). Taken together, our results indicate that CMT1 functions as an inner envelope Mn transporter responsible for chloroplast Mn2+ uptake.
作者
Bin Zhang
Chi Zhang
Congge Liu
Yanping Jing
Yuan Wang
Ling Jin
Lei Yang
Aigen Fu
Jisen Shi
Fugeng Zhao
Wenzhi Lan
Sheng Luan
Bin Zhang;Chi Zhang;Congge Liu;Yanping Jing;Yuan Wang~;Ling Jin;Lei Yang;Aigen Fu;Jisen Shi;Fugeng Zhao~;Wenzhi Lan;Sheng Luan(Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology,College of Life Sciences,Nanjing University,Nanjing 210093,China;The Key Laboratory of Western Resources Biology and Biological Technology,College of Life Sciences,Northwest University,Xi'an,China;Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology,Key Laboratory of Forest Genetics and Biotechnology,Nanjing Forestry University,Nanjing 210037,China;Department of Plant and Microbial Biology,University of California,Berkeley,CA 94720)