期刊文献+

包簇框架云资源分配规划 被引量:1

CLUSTER FRAMEWORK CLOUD RESOURCES ALLOCATION PLANNING
下载PDF
导出
摘要 大量云计算数据中心建立的同时,维持数据中心的正常运转产生了巨大能耗。针对高能耗的问题,提出一种包簇框架下服务器预留分配规划算法。该算法不再以传统虚拟机为中心的资源分配方式作为模型,而是提出全新包簇框架模型下实现虚拟机到服务器的映射。利用中心极限定理来确定要预留服务器的数量,通过恒定数量的服务器从闲置状态转换为待机状态。这样不仅有效减少了服务器开关机的次数,而且能第一时间满足用户需求。资源分配规划运用0-1背包算法,将同一级别的包映射到同一级别的簇,该过程递归重复,直到所有包映射到簇。实验表明,该算法不仅降低了能耗,还提高了资源利用率,起到有效节能的作用。 While building a large number of cloud computing data centers, maintaining the normal operation of the data center has generated a lot of energy consumption. To solve the problem of high energy consumption, we proposed a server reservation allocation planning algorithm based on clustering framework. The algorithm no longer uses the traditional virtual machine-centric resource allocation method as a model. Instead, it proposes a new cluster framework model to map virtual machines to servers. The central limit theorem was used to determine the number of servers to be reserved, and a constant number of servers were converted from idle to standby. This not only effectively reduced the number of server turn-on and turn-offs, but also met the need of user in a timely manner. Resource allocation planning used 0-1 knapsack algorithm to map packets of the same level to clusters of the same level, and the process repeated recursively until all packets are mapped to the cluster. Experimental results show that the algorithm not only reduces the energy consumption, but also improves the utilization of resources, and plays an effective role in energy saving.
作者 朱兵伟 陈世平 Zhu Bingwei;Chen Shiping(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Information Office,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《计算机应用与软件》 北大核心 2018年第9期252-257,287,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61472256) 上海市教委科研创新重点项目(12zz137)
关键词 云资源 能耗包簇框架 服务器预留 0—1算法 Cloud resources Energy consumption Cluster framework Server reservation 0 - 1 algorithm
  • 相关文献

参考文献4

二级参考文献58

  • 1Buyya Rajkumar, Yeo Chee Shin, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009, 25(6) 599 616.
  • 2Ibarra O, Kim C. Heuristic algorithms for scheduling inde- pendent tasks on nonidentical processors. Journal of the ACM, 1977, 77(2): 280-289.
  • 3Duan Rubing, Prodan Radu, Fahringer Thomas. Perform ance and cost optimization for multiple large-scale grid work- flow applications//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Reno, Nevada, USA, 2007.- 110 121.
  • 4Nascimento Aline P, Boeres Cristina, Rebello Vinod E F. Dynamic self-scheduling for parallel applications with task dependencies//Proceedings of the 6th International Workshop on Middleware for Grid Computing (MGC 08). Belgium, 2008:1-6.
  • 5Atakan D, Fusun O. Genetic algorithm based scheduling of meta-tasks with stochastic execution times in heterogeneous computing systems. Cluster Computing, 2003, 7(2) : 177=190.
  • 6Buyya R, Murshed M, Abramson D, Venugopal S. Schedu ling parameter sweep applications on global grids: A deadline and budget constrained cost time optimization algorithm. Software-Practice and Experiences, 2005, 35(5): 491-512.
  • 7Kumar Subodha, Dutta Kaushik et al. Maximizing business value by optimal assignment of jobs to resources in grid com puting. European Journal of Operational Research, 2009, 194(3) 856-872.
  • 8Yang J, Khokhar A, Sheikh S, Ghafoor A. Estimating exe- cution time for parallel tasks in heterogeneous processing (HP) environment//Proceedings of the Heterogeneous Corn puting Workshop. Cancun, 1994:23-28.
  • 9Beltrame G, Brandolese C, Fornaciari W, Salice F, Sciuto D, Trianni V. Dynamic modeling of inter-instruction effectsfor execution time estimation//Proceedings of the 14th Inter- national Symposium on System Synthesis. Canada, 2001: 136-141.
  • 10Kelly F P, Maulloo A K, Tan D K H. Rate control for com- munication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 1998, 49(3): 237-252.

共引文献117

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部