期刊文献+

基于改进势场蚁群算法的机器人路径规划 被引量:139

Robot path planning based on improved ant colony algorithm with potential field heuristic
原文传递
导出
摘要 提出一种全局静态环境下移动机器人路径规划的改进势场蚁群算法.该算法采用人工势场法求得的初始路径和机器人与下一个节点之间的距离综合构造启发信息,并引入启发信息递减系数,避免了传统蚁群算法由于启发信息误导所致的局部最优问题;依据零点定理,提出初始信息素不均衡分配原则,不同的栅格位置赋予不同的初始信息素,降低蚁群搜索的盲目性,提高算法的搜索效率;设定迭代阈值,自适应调节信息素挥发系数,使得该算法具有较高的全局搜索能力,避免出现停滞现象.仿真结果验证了所提出算法的可行性和有效性. The paper proposes an improved ant colony algorithm with potential field heuristic for the path planning of mobile robots in the global static environment. The algorithm constructs the comprehensive heuristic information based on the initial path obatined by using the artificial potential field method and the distance between the robot and the next node. Then, the heuristic information decline coefficient is introduced to avoid the local optimization problem caused by misleading information of the traditional ant colony algorithm. Based on the zero point theorem, this paper proposes an initial pheromone unequal allocation principle. Various grid positions are endowed with different initial pheromones, which decreases the blindness of ant colony search and improves the searching efficiency of the algorithm.An iterative threshold is set to adaptively adjust pheromone volatilization coefficients. In this way, the algorithm has excellent global searching ability, and the stagnation phenomenon can be avoided. The simulation results show the feasibility and effectiveness of the proposed method.
作者 王晓燕 杨乐 张宇 孟帅 WANG Xiao-yan;YANG Le;ZHANG Yu;MENG Shuai(School of Mechatronic Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《控制与决策》 EI CSCD 北大核心 2018年第10期1775-1781,共7页 Control and Decision
基金 陕西省教育厅自然科学研究项目(14JK1405 14JK1427)
关键词 路径规划 蚁群算法 人工势场法 启发信息 path planning ant colony algorithm artificial potential field heuristic information
  • 相关文献

参考文献4

二级参考文献94

  • 1孙力娟,王良俊,王汝传.改进的蚁群算法及其在TSP中的应用研究[J].通信学报,2004,25(10):111-116. 被引量:38
  • 2戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 3Dorigo M,Maniezzo V,Colorni A.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transaction on Systems,Man,and Cybernetic-Part B,1996,26(1):29-41.
  • 4Dorigo M,Gambardella L M.Ant colonies for the traveling salesman problem[J].BioSystems,1997,43(2):73-81.
  • 5Stutzle T,Hoos H.Max-min ant systems[J].Future Generation Computer Systems,2000,16(8):889-914.
  • 6段海滨.蚁群算法原理及应用[M].北京:北京科学出版社,2005.
  • 7Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 8Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 9Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 10Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.

共引文献401

同被引文献896

引证文献139

二级引证文献1249

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部