期刊文献+

浅谈互联网+环境下影响高职学生深度学习能力的因素 被引量:3

Talking about the Factors Affecting Higher Vocational Students' Deep Learning Ability in Internet + Environment
下载PDF
导出
摘要 随着社会的发展,学会学习、深度学习已成为学习、生活和工作必需的一项能力。介绍了深度学习及深度学习能力的内涵;分析了互联网+环境下高职生进行深度学习能力研究的意义;从基本信息、学习能力和方式、深度认知情况及信息素养能力四个方面剖析了影响高职学生深度学习能力的因素。 with the development of society, learning to learn and deep learning has become an essential ability in study, life andwork. This paper introduces the connotation of deep learning and deep learning ability; analyzes the deep learning ability of gradu-ate students in Higher Vocational Internet plus environment significance; factors from four aspects of basic information, learningability and method, depth of cognition and analysis of the impact of information literacy learners' deep learning ability.
作者 肖英 XIAO Ying (Hunan Chemical Industry Vocational Technical College, Zhuzhou 412004, China)
出处 《电脑知识与技术》 2018年第7期156-158,共3页 Computer Knowledge and Technology
基金 湖南化工职业技术学院课题:互联网+环境下高职学生深度学习能力培养研究(项目编号:HNHY2017014)
关键词 互联网+ 高职学生 深度学习能力 Internet plus higher vocational student deep learning ability
  • 相关文献

参考文献3

二级参考文献91

  • 1何玲,黎加厚.促进学生深度学习[J].计算机教与学.现代教学,2005(5):29-30. 被引量:1365
  • 2KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 3DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 4ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 5BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 6ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 7SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 8RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.
  • 9LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400.
  • 10SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898.

共引文献385

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部