摘要
[目的/意义]阐述大规模知识图谱及其典型应用,分析其所面临挑战及对策,展望其发展趋势。[方法/过程]采用网络调查法、内容分析法系统梳理、阐述大规模知识图谱及其典型应用,所面临挑战及对策、发展趋势。[结果/结论]大规模知识图谱典型应用为语义搜索、深度问答、智能推荐等;面临特征知识表示、知识缺失、知识更新、功能全面性等挑战;向特色化、开放化、智能化方向发展。
[ Purpose/significance ] This paper aims to expound large-scale knowledge graph and its typical application, ana- lyze the challenges and countermeasures it faces, and present its development trend. [ Method/process] Using the methods of net- work investigation and content analysis, the paper systematically explores the large-scale knowledge graph and its typical applica- tions, its challenges and countermeasures, as well as its development trends. [ Result/conclusion ] The typical applications of large-scale knowledge graph are semantic search, in-depth question and answer, intelligent recommendation, etc. It faces the challenges of feature knowledge representation, knowledge lacking, knowledge updating, function comprehensiveness, and so on. It is developing in the direction of specialization, openness and intelligence.
出处
《情报理论与实践》
CSSCI
北大核心
2018年第11期138-143,共6页
Information Studies:Theory & Application
基金
教育部人文社会科学研究规划基金资助项目"基于本体的数字图书馆语义用户兴趣模型构建机理及应用模式研究"(项目编号:17YJA870016)
中国博士后科学基金资助项目"基于领域本体的数字图书馆用户兴趣建模研究"(项目编号:2014M560107)
国家自然科学基金资助项目"基于语义网格的数字图书馆个性化推荐模型研究"(项目编号:71003032)
全国教育科学规划基金资助项目"基于多数据源
多方法融合的学科知识图谱构建方法研究"(项目编号:DIA160326)的成果
关键词
大规模知识图谱
知识图谱
应用研究
发展对策
large-scale knowledge graph
knowledge graph
application study
development countermeasures