期刊文献+

可配置的软件动态数据测试系统仿真分析

Configurable Software Dynamic Data Test System Simulation Analysis
下载PDF
导出
摘要 针对当前软件动态数据测试方法存在的测试结果准确性低和测试效率低的问题,提出一种基于粒子群算法的可配置系统软件动态数据测试方法。通过路径覆盖策略对可配置系统中的软件动态数据进行测试。采用粒子群算法寻找可配置系统中软件动态数据的惯性权重,计算软件动态数据的粒子群离散度,根据离散度搜索可配置系统中的软件动态数据。对路径覆盖中的分支路径和实际路径的偏离程度进行计算,采用离散度动态粒子群算法计算分支谓词权重和分支嵌套权重,并综合分支谓词权重和分支嵌套权重,构建可配置系统动态数据测试模型,完成可配置系统中软件动态数据的测试。仿真结果表明,所提方法得到的测试结果准确性高、测试效率高。 For the low accuracy and low efficiency in current method of software dynamic data test,a method for software dynamic data test of configurable system based on particle swarm algorithm was proposed. The path coverage strategy was used to test software dynamic data in configurable system. Then,the particle swarm algorithm was used to search inertia weight of software dynamic data and the particle swarm dispersion degree of software dynamic data was calculated. The software dynamic data was searched based on dispersion degree. Moreover,the degree of deviation between branch path and actual path in path coverage was calculated and the dispersion dynamic particle swarm algorithm was used to calculate the branch predicate weight and the branch nested weight. Meanwhile,the branch predicate weight and the branch nested weight were combined to build the test model of dynamic data in configurable system. Thus,we could complete the test of software dynamic data in configurable system. Simulation results show that the proposed method has high accuracy of test result and high test efficiency.
作者 白凤凤 王三虎 BAI Feng-feng;WANG San-hu(Department of Computer Science and Technology,Lvliang University,Lvliang Shanxi 033000,China)
出处 《计算机仿真》 北大核心 2018年第11期340-343,共4页 Computer Simulation
基金 基于工程教育认证的应用型本科院校软件工程专业教学质量提升研究与实践(J2018193)
关键词 可配置软件 动态数据 测试系统 Configurable software Dynamic data Test system
  • 相关文献

参考文献10

二级参考文献58

  • 1魏世斌,刘伶萍,赵延峰,李颖,王昊.高速轨道检测系统[J].铁路技术创新,2012(1):29-32. 被引量:11
  • 2赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4CHIANG L H, BRAATZ R D, RUSSELL E L. Fault Detection and Diagnosis in Industrial Systems[M]. Springer Science & Business Media, 2001.
  • 5QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36 (2): 220-234.
  • 6LI G, QIN S J, ZHOU D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46 (1): 204-210.
  • 7SCH?LKOPF B, SMOLA A, MüLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10 (5): 1299-1319.
  • 8TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290 (5500): 2319-2323.
  • 9ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323-2326.
  • 10BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15 (6): 1373-1396.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部