期刊文献+

ARIMA时间序列模型和BP神经网络组合预测在铁路客座率中的应用 被引量:14

Application of ARIMA Time Series and BP Neural Network Combination Model in Railway Passenger Rate
原文传递
导出
摘要 首先利用python3.5对铁路客座率原始数据进行预处理,然后利用ARIMA时间序列和BP神经网络进行单一的模型预测,得出单一预测模型的均方误差.在组合预测求解时,先求出ARIMA时间序列模型的误差向量E1和BP神经网络的预测误差为E2,由于这两种预测方法是相互独立的,因此误差向量E1和E2线性无关且组合预测误差向量为E=(E1,E2),得出组合预测平方和的形式为J-W^TEW,然后根据组合预测误差平方和最小的原则来确定权值w1,w2,最后求解凸二次规划问题得到权值并求出组合预测模型和均方误差.通过比较单一模型预测和组合预测的均方误差,得出结论:组合预测模型的精确度高于单一预测模型的精确度. Firstly, using python3.5 to preprocess the original data of railway passenger rate,then using ARIMA time series model and BP neural network model to forecast, the mean square error of a single prediction model is obtained. In combination forecasting, the error vector of ARIMA time series model and BP neural network model are obtained. Because the two methods are independent of each other, and error vector are independence. It is concluded that the sum of squares of combination forecasting is, then, according to the principle of minimum square sum of combination forecasting error, the weights are determined.Finally, the convex quadratic programming problem is obtained and the combination forecasting model and mean square error are obtained… by comparing the mean square error of single model prediction and combination forecasting, come to conclusion: the accuracy of the combined forecasting model is higher than that of the single prediction model.
作者 张春露 白艳萍 ZHANG Chun-lu;BAI Yan-ping(School of Science,North University of China,Taiyuan 030051,China)
机构地区 中北大学理学院
出处 《数学的实践与认识》 北大核心 2018年第21期105-113,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(61275120)
关键词 ARIMA时间序列模型 BP神经网络 组合预测 铁路客座率 BP neural network ARIMA BP-ARIMA combinatorial model railway pas-senger ratio
  • 相关文献

参考文献7

二级参考文献52

共引文献147

同被引文献132

引证文献14

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部