摘要
随着分布式风力发电等新能源以及电动汽车(EV)等新型负荷接入配电网的比重逐步提高,传统的配电网重构模型难以反映其随机性和波动性。文中首先构造了风力机和EV的概率场景模型及含分布式电源(DG)和EV的配电网重构模型;其次,在场景分割的基础上对不同场景分别进行线性化随机潮流计算,在保证精确性的前提下简化模型,避免了场景的组合爆炸,体现了对于配电网中不断增加的DG和EV的适应性;最后采用一种适用于配电网重构场景模型的改进生物地理学优化算法,通过引入改进的编码规则、余弦迁移模型及变异操作,提高搜索速度和精度,抑制算法进化过程中因早熟收敛而陷入局部最优。算法在IEEE 69节点算例20次仿真计算中比传统人工智能算法更有优势。
With the gradual increase of distributed generation (DG) and electric vehicle (EVs) integrated in the distribution network,traditional models for reconfiguration can hardly reflect the randomness and volatility.For this reason,a probabilistic scenario model of reconfiguration considering wind power and electric vehicle is developed first.Then,the probabilistic load flow of each scenario is calculated respectively.The model is simplified on the precondition of ensured accuracy to avoid combinatorial explosion, embodying the adaptability of the ever-increasing DGs and EVs. Finally, distribution network reconfiguration using the improved biogeography-based optimization algorithm is proposed,the improved codification strategy, the cosine migration model and the mutation operation are introduced to improve the search efficiency and bypass local optima. The proposed algorithm has shown advantages over other traditional artificial intelligence algorithms in 20 times of simulation of the IEEE 69-bus case.
出处
《电力系统自动化》
EI
CSCD
北大核心
2015年第14期82-88 96,96,共8页
Automation of Electric Power Systems
基金
国家电网公司科技项目(5211011400BT)~~
关键词
风力发电
电动汽车
随机潮流
场景分析
配电网重构
改进的生物地理学优化算法
wind power generation
electric vehicle
probabilistic load flow
scenario analysis
distribution network reconfiguration
improved biogeography-based optimization(IBBO)algorithm