期刊文献+

面向在线测量的亚像素提取与实验验证 被引量:7

Research on improved sub-pixel extraction algorithm for real-time detection
下载PDF
导出
摘要 为解决亚像素提取时间过长以及解决不同材质的灰度图像对亚像素提取精度影响的问题,提出了一种几何重心法的亚像素提取算法。几何重心法首先通过相关分析获取整像素值,在整像素值附近对3×3的相关值进行几何差值,再通过重心算法实现对亚像素的快速提取。为验证几何重心法,采用光栅微移动平台对不同摄像头距离、不同背景光、不同材质的灰度图条件进行了亚像素对比实验,实验结果表明,相比于传统曲面拟合法和梯度法,几何重心法在亚像素提取时间、抗干扰能力以及误差等方面都具有明显的优势,特别是亚像素提取时间仅为其他算法的1/5或更少,满足了在线测量的实时要求。 In order to solve the problem of long sub-pixel extraction time and the influence of gray images with different materials on the precision of sub-pixel extraction,a sub-pixel extraction algorithm based on the geometric center of gravity method is proposed.Firstly,the geometric center of gravity method obtains the whole pixel value by correlation analysis method,then obtains the geometric difference value by the correlation value of 3×3 near the integer pixel value,and fast sub-pixel extraction is realized by gravity center algorithm.In order to verify the geometric center of gravity method,the grating micro-mobile platform is used to carry out the sub-pixel contrast experiment on the grayscale images with different camera distances,different background lights and different materials.The experimental results show that compared with the traditional surface fitting method and gradient method,the geometric center of gravity method has obvious advantages in the aspects of sub-pixel extraction time,anti-interference and error,etc.In particular,the sub-pixel extraction time is only 1/5 or less than the other algorithms,which meets the requirements of real-time online measurement.
作者 徐从裕 徐俊 高雨婷 胡宗久 杨雅茹 Xu Congyu;Xu Jun;Gao Yuting;Hu Zongjiu;Yang Yaru(School of Instrument Science and Opto-electronics Engineering,Hefei University of Technology,Hefei 230009,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2019年第8期23-29,共7页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(51275149) 安徽省计量科学研究院项目(W2014JSKF0454)资助
关键词 亚像素 几何重心法 抗干扰 在线检测 sub-pixel geometric center of gravity method anti-interference the online measurement
  • 相关文献

参考文献16

二级参考文献162

  • 1张弘,卢奕南.基于内容的图像检索技术在医学领域中的应用[J].仪器仪表学报,2005,26(z2):682-685. 被引量:3
  • 2柏长冰,齐春,杨莹,宋福民.Hausdorff匹配快速检测PCB基准标记[J].光电子.激光,2006,17(4):498-501. 被引量:4
  • 3HUTFENLOCHER D P, KLANDERMAN G A, RUCKLIDGE J. Comparing images using the Hausdorff distance [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(9) :850-863.
  • 4WILLIAM J R. Efficiently locating objects using the Haus- dorff distance [ J ]. International Journal of Computer Vision, 1997,24(3) :251-270.
  • 5ULRICH M, STEGER C, BAUMGARTNER A. Reahime object recognition using a modified generalized hough transform [ J ]. Pattern Recognition, 2003, 36 ( 11 ) : 2557-2570.
  • 6SHARK L K, KUREKIN A A, MATUSZEWSKI B J. De- velopment and evaluation of fast branch-and-bound algo- rithm for feature matching based on line segments [ J ]. Pattern Recognition ,2007,40 : 1432-1450.
  • 7PARAMANAND C, RAJAGOPALAN A N. Efficient geo- metric matching with higher-order features [ J ]. Optical Society of America,2010,27(4) :739-748.
  • 8OCCLUSION S C, CLUTIER, and Illumination invariant ob- ject recognition [ J ]. International Archives of Photogramme- try and Remote Sensing,2002,XXXIV(3A):345-350.
  • 9QU Y D,CUI C S,CHEN S B,et al. A fast subpixel edge de- tection method using sobelzernike moments operator[J]. Im- age and Vision Computing,2005,23:11-17.
  • 10SINGH C, WALIA E. Fast and numerically stable methods for the computation of Zernike moments [ J ]. Pattern Rec- ognition, 2010,43 : 2497 -2506.

共引文献227

同被引文献69

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部