期刊文献+

改进的量子遗传偏最小二乘特征选择方法应用 被引量:2

Application of feature selection method of improved quantum genetic algorithm-partial least square
下载PDF
导出
摘要 针对量子遗传偏最小二乘法在特征选择过程中,存在初始化种群粗糙和适应度函数复杂等问题,提出了一种新的特征选择方法——改进的量子遗传偏最小二乘法(Improved Quantum Genetic Algorithm Partial Least Square,IQGAPLS)算法。该算法根据求解问题的实际情况,赋予种群初始值。同时,设计了一种新的适应度函数,以减少计算量,并基于此适应度函数,提出了一种新的旋转角度更新公式,解决了其方向和大小确定困难的问题。将该算法应用于轴向柱塞泵故障信号的特征选择中。实验结果表明,IQGAPLS算法具有较少的计算量和较短的执行时间,选择出的特征包含更多的工作状态信息,从而提高了分类准确率。 In order to solve the problems of inaccurate population initial and complicated fitness function in feature selection,this paper proposes a novel feature selection algorithm-Improved Quantum Genetic Algorithm-Partial Least Square(IQGAPLS).In IQGAPLS algorithm,according to the fact of problem,population is given initial value.Meanwhile,anew fitness function is designed for reducing computation amount.Based on previous fitness function,the formula forupdating rotation angle is proposed.IQGAPLS is applied to feature selection for fault signal of axial piston pump.Theexperimental results indicate that IQGAPLS has less computation amount and shorter execution time.The selectedfeatures contain more information of fault states,which can enhance classification accuracy.
作者 李胜 张培林 李兵 吴定海 周云川 LI Sheng;ZHANG Peilin;LI Bing;WU Dinghai;ZHOU Yunchuan(Department Seventh, Ordnance Engineering College, Shijiazhuang 050003, China;Department Fourth, Ordnance Engineering College, Shijiazhuang 050003, China;Ordnance Technology Research Institute, Ordnance Engineering College, Shijiazhuang 050003, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第3期242-246,252,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.E51205405 No.E51305454)
关键词 量子计算 适应度函数 量子遗传偏最小二乘法 特征选择 轴向柱塞泵 quantum computation fitness function Quantum Genetic Algorithm Partial Least Square(QGAPLS) feature selection axial piston pump
  • 相关文献

参考文献12

二级参考文献110

共引文献147

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部