期刊文献+

改进PSO优化神经网络的短时交通流预测 被引量:14

Short-term prediction of traffic flow based on neural network optimized improved particle swarm optimization
下载PDF
导出
摘要 在短时交通流预测中,传统PSO优化神经网络预测模型对逃逸粒子直接取边界值且自身无相应的变异机制,这对于维持粒子群多样性、寻找最优解是不利的。为更进一步提高短时交通流预测精度,将在传统PSO优化BP神经网络的基础上,引入边界变异算子、自变异算子对粒子进行双重变异以优化网络配置参数。用实测的北京二环交通流数据对改进的预测模型进行验证,结果表明该模型更有利于搜寻全局最优解,且寻优时间更短,能有效改善短时交通流预测性能。 In short-term traffic flow prediction,the traditional PSO optimizes the neural network model for prediction setsescape particle on the boundary directly and has no corresponding variation mechanism by itself,which is bad for maintainingthe diversity of particle swarm and finding the optimal solution.To further improve the accuracy of short-term trafficflow prediction,boundary mutation operator and self-adaptive mutation operator called double mutation are proposedin PSO to optimize the network configuration parameters based on the traditional PSO to optimize the BP neural network.The proposed prediction model is tested by measured Beijing2nd ring road’s traffic flow data and the computationalresults show that this modified prediction method is more beneficial to search for the global optimal solution and saveoptimization time,and can improve the performance of short-term traffic flow prediction effectively.
作者 张军 王远强 朱新山 ZHANG Jun;WANG Yuanqiang;ZHU Xinshan(School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第14期227-231,245,共6页 Computer Engineering and Applications
基金 天津市创新基金(No.13ZXCXGX40400)
关键词 短时交通流预测 预测模型 反向传播(BP)神经网络 粒子群优化算法(PSO) 双重变异 short-term traffic flow prediction prediction model Back Propagation(BP)neural network Particle Swarm Optimization(PSO) double mutation
  • 相关文献

参考文献8

二级参考文献61

  • 1李开荣,陈宏建,陈崚.一种动态自适应蚁群算法[J].计算机工程与应用,2004,40(29):149-152. 被引量:20
  • 2张毅,罗元.基于人工神经网络城市交通流量智能预测的研究[J].重庆邮电学院学报(自然科学版),2005,17(2):241-243. 被引量:15
  • 3郭伟,姚丹亚,付毅,胡坚明,刘宁.区域交通流特征提取与交通状态评估方法研究[J].公路交通科技,2005,22(7):101-104. 被引量:38
  • 4程启明,王勇浩.基于蚁群优化算法的模糊神经网络控制器及仿真研究[J].上海电力学院学报,2006,22(2):105-108. 被引量:8
  • 5李松,贺国光,张杰.车头间距与高速公路交通流混沌[J].西南交通大学学报,2007,42(3):305-309. 被引量:5
  • 6[3]Yang Licai,Jia Lei,Wang Hong.Wavelet network with genetic algorithm and its applications for traffic flow forecasting [C].Fifth World Congress on Intelligent Control and Automation,Conference Proceedings,2004:5330- 5333.
  • 7[5]Smith,Brian L,Williams Billy M,Oswald R,Keith.Comparison of parametric and nonparametric models for traffic flow forecasting [J].Transportation Research Part C:Emerging Technologies,v 10,n 4,August,2002:303-321.
  • 8[7]Zhang Ya-Ping,Pei Yu-Long.Research on traffic flow forecasting model based on cusp catastrophe theory [J].Journal of Harbin Institute of Technology (New Series),v 11,n 1,February,2004:1 - 5.
  • 9[8]Haichen Xu,Daniel J.Dailey.Real Time Highway Traffic Simulation and Prediction Using Inductance Loop Data[C].Vehicle Navigation and Information Systems Conference,1995.Proceedings.July-2Aug.1995:194-199.
  • 10[9]Lam,William H.K.; Shi,JohnW.Z.; Chan,K.S.A traffic flow simulator for short-term travel time forecasting [J].Journal of Advanced Transportation,v 36,n 3,Fall,2002:265-291.

共引文献248

同被引文献113

引证文献14

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部