摘要
在短时交通流预测中,传统PSO优化神经网络预测模型对逃逸粒子直接取边界值且自身无相应的变异机制,这对于维持粒子群多样性、寻找最优解是不利的。为更进一步提高短时交通流预测精度,将在传统PSO优化BP神经网络的基础上,引入边界变异算子、自变异算子对粒子进行双重变异以优化网络配置参数。用实测的北京二环交通流数据对改进的预测模型进行验证,结果表明该模型更有利于搜寻全局最优解,且寻优时间更短,能有效改善短时交通流预测性能。
In short-term traffic flow prediction,the traditional PSO optimizes the neural network model for prediction setsescape particle on the boundary directly and has no corresponding variation mechanism by itself,which is bad for maintainingthe diversity of particle swarm and finding the optimal solution.To further improve the accuracy of short-term trafficflow prediction,boundary mutation operator and self-adaptive mutation operator called double mutation are proposedin PSO to optimize the network configuration parameters based on the traditional PSO to optimize the BP neural network.The proposed prediction model is tested by measured Beijing2nd ring road’s traffic flow data and the computationalresults show that this modified prediction method is more beneficial to search for the global optimal solution and saveoptimization time,and can improve the performance of short-term traffic flow prediction effectively.
作者
张军
王远强
朱新山
ZHANG Jun;WANG Yuanqiang;ZHU Xinshan(School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)
出处
《计算机工程与应用》
CSCD
北大核心
2017年第14期227-231,245,共6页
Computer Engineering and Applications
基金
天津市创新基金(No.13ZXCXGX40400)