期刊文献+

一类非线性模型下的最优分红和风险控制策略 被引量:1

Optimal Dividend and Risk Control Strategies in a Nonlinear Model
下载PDF
导出
摘要 本文用一类非线性模型模拟公司的资产过程,该模型反映了经营成本与业务规模之间的相关关系.假设公司可以通过调整业务规模、分红和融资控制资产过程,在控制过程中消耗比例交易费用和固定交易费用.在最大化公司价值的目标下,我们借助随机控制方法给出了最优的控制策略及值函数的显式解.结果显示,控制策略由模型参数共同决定,公司应当采用脉冲策略进行分红,资产增加时应扩大业务规模,当且仅当交易费用相对较小时选择脉冲策略进行融资以避免破产. This paper assumes that company’s asset process follows a non-linear model,which reflects the relationship between the operation costs and the size business.Suppose that the company can control the asset process by changing the size of business,paying dividends and raising money dynamically.Meanwhile,it bears both fixed and proportional transaction costs during the control processes.Under the objective of maximizing the company’s value,we obtain the explicit solutions of optimal strategies and value function by using the optimal control method.The results illustrate that the optimal strategies depend on the parameters of the model.The company should expand the business scale with the increasing of asset.Dividends should be paid out according to the impulse control strategy.Financing is profitable to avoid bankruptcy if and only if the transaction costs are relatively low.
作者 姚定俊 王云 范堃 YAO DingJun;WANG Yun;FAN Kun(School of Finance, Nanjing University of Finance and Economics, Nanjing, 210023, China;School of Statistics, East China Normal University, Shanghai, 200241, China)
出处 《应用概率统计》 CSCD 北大核心 2017年第6期625-641,共17页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金项目(批准号:11501211 71671082 71471081 71501088) 教育部人文社会科学研究青年基金项目(批准号:15YJC910008) 江苏省高校自然科学研究面上项目(批准号:15KJB110009) 上海市浦江人才计划(批准号:15PJC026) 上海市哲学社会科学规划课题(批准号:2015EJB002) 中国博士后科学基金第58批面上资助项目(批准号:2015M581564) 上海市晨光计划(批准号:15CG22)资助
关键词 非线性模型 分红 融资 业务规模 最优策略 non-linear model dividend financing the size of business optimal strategy
  • 相关文献

参考文献2

二级参考文献12

  • 1Asmussen, S., Taksar, M. Controlled diffusion models for optimal dividend pay-out. Insurance: Mathe- matics and Economics 20(1): 1-15 (1997).
  • 2Browne, S. Optimal investment policies for a firm with random risk process: exponential utility and minimizing the probability of ruin. Mathematical Methods of Operations Research, 20:973-958 (1995).
  • 3Choulli, T., Taksax,M., Zhou, X.Y. An optimal diffusion model of a company with constraints on risk control. SIAM J. Control Optimal., 41:1946-1979 (2003).
  • 4Fleming, W.H., Soner, H.M. Controlled markov process and viscosity solutions. Springer-Verlag, New York, 1993.
  • 5Guo, X. Some risk management problems for firms with internal competition and debt. Journal of Applied Probability, 39:55-69 (2002).
  • 6Guo, X., Liu, J., Zhou, X.Y. A constrained non-linear regular-singular stochastic control problem, with applications. Stochastic Processes and their Applications, 109:167-187 (2004).
  • 7Hojgaard B., Taksar M. Controlling risk exposure and dividends payout schemes: insurance company example. Mathematical Finance, 2:153-182 (1999).
  • 8Lions, P., Sznitman, A. Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math., 37:511-537 (1984).
  • 9Taksar, M., Zhou, X.Y. Optimal risk and dividend control for a company with debt liability. Insurance: Mathematical and Economics, 22:105-122 (1998).
  • 10Taksar M. Optimal risk and dividend distribution control models for an insurance company. Mathematical Methods of Operations Research, 51:1-42 (2000).

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部