期刊文献+

当源项为L^1时p-Laplace方程有界弱解的存在性

Existence of bounded weak solutions to a p-Laplace equation with source term in L^1
下载PDF
导出
摘要 研究一个p-Laplace方程弱解存在性问题,方程主要的特征是源项f仅仅位于L^1中。借助于方程低阶项系数与右端源项的正则化效应,证明了弱解的先验L~∞估计。利用一致L~∞界,最终得到了弱解的存在性。 The existence of solutions to a p-Laplace equation is studied.The source term f only lies in L1,which is the main feature of the problem.With the help of the regularizing effect between the coefficient of the lower order term and the source term,a priori L∞regularity for its weak solutions is proved.B y the uniform L∞bound,the existence of weak solutions is obtained.
作者 李仲庆 LI Zhongqing(College of Mathematics,Jilin Normal University,Siping 136000,China)
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期66-68,共3页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学青年基金(11401252) 四平市科技发展计划(2016055) 吉林师范大学博士科研启动(2015006)
关键词 P-LAPLACE方程 L1数据 有界弱解 p-Laplace equations L1 datum bounded weak solutions
  • 相关文献

参考文献3

二级参考文献11

  • 1ZHAO J H, ZHAO P H. Infinitely many weak solutions for ap -Laplacian equation with nonlinear boundary condition[ J ]. Electron J Differential Equations, 2007, 90 : 1 - 14.
  • 2ZHAO J H, ZHAO P H. Existence of infinitely many weak solutions for the p -Laplacian with nonlinear boundary condition [J]. Nonlinear Analysis : TMA, 2008, 69 : 1343 - 1355.
  • 3BONDER J F, MARTINEZ S, ROSSI J D. The behavior of the best Sobolev trace constant and extremals in thin domains[J]. J Differential Equations, 2004, 198 ( 1 ) : 129 - 148.
  • 4BONDER J F, ROSSI J D. Existence results for the pLaplacian with nonlinear boundary conditions [ J ]. J Math Anal Appl, 2001, 263 (1) : 195 - 223.
  • 5MARTINEZ S, ROSSI J D. Weak solutions for the p - Laplacian with a nonlinear boundary condition at resonance[ J]. Electron J Differential Equations, 2003, 27 : 1 -14.
  • 6PFLUGER K. Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition [J]. Electron J Differential Equations, 1998, 10:1 - 13.
  • 7DRABEK P, ROBINSON S B. Resonance problem for the p-Laplacian[J]. J Funct Anal, 1999, 169:189-200.
  • 8LIEBERMAN G M. Boundary regularity for solutions of degenerate elliptic equations [ J ]. Nonlinear Analysis : TMA, 1988, 12:1203-1219.
  • 9LIONS P L. The concentration-compactness principle in the calculus of variations. The limit case part [J].Rev Mat Iberoamericana, 1985, 1 (1): 145-201.
  • 10LIONS P L. The concentration-compactness principle in the calculus of variations. The limit case part 2 [J]. Rev Mat Iberoamericana, 1985, 1 (2):45-121.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部