期刊文献+

压缩感知中一种改进的迭代硬阈值算法

A Modified Iterative Hard Thresholding Algorithm in Compressed Sensing
下载PDF
导出
摘要 研究了压缩感知理论中一种改进的迭代硬阈值稀疏信号重构算法。针对现有IHT算法类最优秀的BIHT算法中回溯操作无法保证稀疏信号重构误差递减的问题,对稀疏重构误差及其差值进行了简单介绍和分析,提出了一种能够保证重构误差随迭代进行单调减小的重构算法,在每次迭代的回溯操作中选择能够保证重构误差逐渐减小的原子,并将其指标与估计支撑集合并,最后基于最小二乘法进行伪逆运算获取稀疏信号估计。对高斯稀疏信号和0-1稀疏信号进行了仿真,证明了优于IHT、NIHT以及BIHT算法的稀疏信号重构性能。 This paper proposes a modified iterative hard thresholding algorithm to reconstruct sparse signal in Compressive Sensing.The backtracking procedure in BIHT algorithm,which is the best algorithm in IHT-type class,can’t guarantee the reduction of sparse signal reconstruction error.Aiming at this problem,this paper briefly introduces and analyzes the sparse signal reconstruction error and its difference,and then proposes a reconstruction algorithm that guarantees the reduction of sparse signal reconstruction error.In the backtracking procedure of each iteration,the atoms guaranteeing the reduction of sparse signal reconstruction error will be selected,and then combined to the estimated support to obtain the sparse signal estimation with pseudo inverse based on the least square.The simulation results indicate that the reconstruction efficiency and effectiveness of the proposed algorithms on Gaussian sparse signal and zero-one signal are obviously better than that of IHT,NIHT and BIHT algorithms.
作者 李佳 刘献杰 智世鹏 LI Jia;LIU Xianjie;ZHI Shipeng(The 54th Research Institute of CETC,Shijiazhuang 050081,China)
出处 《无线电通信技术》 2018年第3期273-276,共4页 Radio Communications Technology
基金 河北省重大科技成果转化专项项目(14040322Z)
关键词 压缩感知 稀疏信号重构 迭代硬阈值 回溯操作 compressive sensing sparse signal reconstruction iterative hard thresholding backtracking procedure
  • 相关文献

参考文献9

二级参考文献59

  • 1FRIEDLANDER B. Random Projections for Sparse Channel Estimation and Equalization [ C ]. Signals Systems and Computers, ACSSC ' 06. Fortieth Asilomar Conference, 2006: 453 - 457.
  • 2ZHANG P, HU Z, QIU R C, et al. A Compressed Sensing Based Ultra-wideband Communication System[ C ]. IEEE International Conference on Communications,2009:214- 226.
  • 3NEEDELL D, VERSHYNIN R. Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit [ J ]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):310- 316.
  • 4PAREDES J L, ARCE G R, WANG Zhong-min. Uhra- Wideband Compressed Sensing : Channel Estimation [ J ] . IEEE Journal of Selected Topics in Signal Processing , 2007,1 ( 3 ) : 383 - 394.
  • 5BAJWA W U, HAUPT J, SAYEED A M, et al. Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels [ J]. Proceedings of the IEEE , 2010, 98(6) : 1058 - 1076.
  • 6CANDES E j, TAO T. The Dantzig Selector :Statistical Estimation when p is much Larger than n [ J ]. Ann. Stat. , 2007,35(6) :2313 - 2351.
  • 7TIBSHIRANI R. Regression Shrinkage and Selection via the Lasso [J]. Proceedings of the IEEE, 1996,58 ( 1 ) : 267 - 288.
  • 8PROAKISJohnG.数字通信(第4版)[M].北京:电子工业出版社.2003:540-545.
  • 9CANDIES E, ROMBERG J, TAO T. Robust Uncertainty Principles:Exact Signal Reconstruction from Highly In- complete Frequency Information [ J ]. IEEE Trans. Informa- tion Theory ,2006,52(2) :489-509.
  • 10CANDES E,ROMBERG J.Quantitative Robust Uncertain- ty Principles and Optimally Sparse Decompositions [ J ]. Foundations of Computational Mathematics, 2006,6 (2) : 227-254.

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部