期刊文献+

基于改进引力搜索算法的桥式起重机主梁优化 被引量:2

Optimization of Main Girder of Bridge Crane Based on Improved Gravitational Search Algorithm
下载PDF
导出
摘要 介绍了一种新型群体智能优化算法——引力搜索算法,针对其局部搜索能力较弱的问题将常系数和权值引入算法,改进了其位置更新公式和惯性质量公式。应用改进的算法、基本算法和遗传算法优化目标函数,利用MATLAB分析结果检验了改进引力搜索算法的可行性和优越性。将万有引力搜索算法运用到桥式起重机主梁的轻量化设计中,通过有限元分析得到优化后的主梁在保证强度刚度等参数符合设计要求的情况下,截面面积比优化前减少了19.14%。 This paper introduces a new group of intelligent optimization algorithm and the gravitational search algorithm,and for the problem of the weak local search capacity,introduces the finite element and the weight into the algorithm which is used to improve the position updating formula and the inertia quality formula.The improved algorithm,the basic algorithm and the genetic algorithm are used to optimize the objective function.The feasibility and superiority of the improved gravitational search algorithm are verified by MATLAB analysis.Then,the gravitational search algorithm is applied to the lightweight design of the main girder of the bridge crane.The optimized area ratio of the main girder after optimization is reduced by 19.14%,and the design requirements such as strength stiffness are satisfied.
作者 侯骅玲 王宗彦 杨扩岭 李志雄 HOU Hualing;WANG Zongyan;YANG Kuoling;LI Zhixiong(School of Mechanical and Power Engineering,The North University of China,Taiyuan 030051,China;Shanxi Crane Digital Design Engineering Technology Research Center,Taiyuan 030051,China)
出处 《机械制造与自动化》 2018年第2期41-44,67,共5页 Machine Building & Automation
关键词 引力搜索算法 桥式起重机 优化 ANSYS MATLAB gravitational search algorithm bridge crane optimization ANSYS MATLAB
  • 相关文献

参考文献7

二级参考文献53

  • 1陈进东,张相胜,潘丰.基于Wiener模型的非线性预测函数控制[J].吉林大学学报(工学版),2011,41(S1):264-269. 被引量:5
  • 2王爽心,韩芳,朱衡君.基于改进变尺度混沌优化方法的经济负荷分配[J].中国电机工程学报,2005,25(24):90-95. 被引量:27
  • 3张艳,李少远,王笑波,周坚刚.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991-995. 被引量:15
  • 4Karakuzu J, Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, 1995,4:1942-1948.
  • 5Tang K S, Man K F, Kwong S, et al.Genetic algorithms and their applications[J].IEEE Signal Processing Magazine, 1996, 13 (6) :22-37.
  • 6Kirkpatrick S, Gelatto C D, Vecchi M EOptimization by simulated annealing[J].Science, 1983,220: 671-680.
  • 7Dorigo M, Maniezzo V, Colomi A.The ant system: optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man,and Cybernetics:Part B, 1996,26(1) :29-41.
  • 8Rashedi E, Nezamabadi-pour H, Saryazdi S.GSA: a gravitational search algorithm[J].lnformation Sciences,2009, 179(13) :2232-2248.
  • 9Kenyon I R.General relativity[M].[S.1.]:Oxford University Press, 1990.
  • 10Du W, Li B.Multi-strategy ensemble particle swarm optimization for dynamic optimization[J].Information Science, 2008, 178 (15) : 3096-3109.

共引文献159

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部