期刊文献+

超低照度下微光图像的深度卷积自编码网络复原 被引量:23

Deep convolutional autoencoder networks approach to low-light level image restoration under extreme low-light illumination
下载PDF
导出
摘要 微光/红外图像彩色融合是目前国内外夜视技术的重要发展方向,在超低照度下(环境照度小于2×10-3 lux),由于成像器件限制,微光图像具有低信噪比、低对比度等特点,导致目标难以辨识,成为制约彩色夜视技术的关键。为了提高目标的探测和识别率,提出了一种基于卷积自编码网络的微光图像复原方法,利用卷积自编码网络从微光图像训练集中学习超低照度下微光图像特征,实现去噪和对比度增强。实验结果表明,本文提出的方法得到的峰值信噪比(Peak Signal to Noise Ratio,PSNR)较经典的BM3D算法平均提高1.67dB,结构相似度(Structural Similarity Index,SSIM)的值平均提高0.063,均方根对比度的值(Root Mean Square Contrast,RMSC)平均提高0.19。对微光图像复原具有很好的效果,能够有效地提高信噪比和对比度水平。 LLL(Low-Light Level)/infrared image color fusion is an important development direction of night vision technology in the world.Under extreme low light level(environment illumination less than),LLL image has low signal to noise ratio and low contrast features,and the target is difficult to identify as imaging device limitations,which has been a key constraint to color night vision technology.In order to improve target detection and recognition rate,LLL image restoration method based on the deep convolutional autoencoder network was proposed,which learning LLL image characteristics from the LLL image training set by using the convolutional autoencoder,and implementing de-noising and contrast enhancement.The experiment results show that,compared with the classical BM3D algorithm,the proposed method improves the peak signal to noise ratio(PSNR)with value of 1.67 dB and reduces the RMSE with value of 0.098,improves the structural similarity(SSIM)with the value of 0.063 and improves the root mean square contrast(RMSC)with value of 0.91.It has a very good effect on the restoration of low light level images,and improves the signal-to-noise ratio and contrast level effectively.
作者 刘超 张晓晖 LIU Chao;ZHANG Xiao-hui(Department of Weaponry Engineering,Naval University of Engineering,Wuhan 430033,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2018年第4期951-961,共11页 Optics and Precision Engineering
基金 军内重点科研项目(No.427210843)
关键词 微光图像 图像复原 卷积神经网络 图像去噪 子像素卷积 Low-Light-Level image(LLL) image restoration convolutional neural network image de-noise sub-pixel convolution
  • 相关文献

参考文献4

二级参考文献22

共引文献54

同被引文献174

引证文献23

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部