期刊文献+

低滚动阻力轮胎结构设计 被引量:11

Tire Structure Design of Low Rolling Resistance
下载PDF
导出
摘要 将轮胎断面划分为胎冠区域和非胎冠区域,采用有限元分析方法和灵敏度分析,建立滚动阻力和区域能量损耗的关系,进行低滚动阻力轮胎结构设计,达到降低滚动阻力的目的。结果表明,变化区域能量损耗与滚动阻力呈线性变化。胎面结构对胎冠区域能量损耗的贡献度高达69%,对胎冠区域能量变化起决定性作用。合理的降低1#和2#带束层宽度,能降低胎面能量损耗,2#带束层对于胎面能量损耗的灵敏度更高。耐磨胶、胎体层、三角胶&胎侧对非胎冠区域能量损耗的贡献度相当,在30%左右。合理的增加耐磨胶高度有利于耐磨胶和胎体能量损耗的降低。合理的降低三角胶高度会降低非胎冠区域能量损耗。基于区域能量损耗与轮胎结构关系,对轮胎胎体结构进行方案设计,最优方案比原始滚动阻力降低9.5%。 The 2-D cross section of radial tire was divided into two areas:the crown and the non-crown.The aim of research was to reducing the rolling resistance by redesign structure.The relationship between regional energy loss and rolling resistance was established by the sensitivity analysis and finite element analysis(FEA).As a result,the energy loss of change region was consistent with the rolling resistance.In the crown region,the mainly contribution of the energy loss was tread structure,nearly up to 69%,which played a crucial role.Reasonably reducing the width of 1#and 2#belt could reduce the energy loss,and 2#has higher sensitivity for the loss energy.In the non-crown,abrasion,carcass,apex and sidewall had the same effect on the non-crown area loss energy,and the Contribution was about 30%.The region loss energy decline with the increase of abrasion height.The reduction of apex height also reduced the non-crown energy loss.Based on above,a final optimization was proposed,which was lower than original scheme by 9.5%.
作者 王国林 吴旭 梁晨 杨建 WANG Guo-lin;WU Xu;LIANG Chen;YANG Jiang(School of Automotive and Traffic Engineering,Jiangsu University,Jiangsu Zhenjiang 212013,China)
出处 《机械设计与制造》 北大核心 2018年第A02期77-79,82,共4页 Machinery Design & Manufacture
基金 国家自然基金(51675240)
关键词 滚动阻力 结构设计 子午线轮胎 能量损耗 Rolling Resistance Structure Design Radial Tire Energy Loss
  • 相关文献

参考文献3

二级参考文献19

  • 1赵敏.降低轮胎滚动阻力的途径[J].轮胎工业,2006,26(10):586-593. 被引量:14
  • 2伍江涛,夏松茂.汽车轮胎滚动阻力及其测试方法[J].中国橡胶,2007,23(21):27-33. 被引量:15
  • 3Thiel K H,Ruehmer T.Novel functionalized synthetic rubbers for tire applications[J].KGK-Kautschuk Gummi Kunststoffe,2013,66(2):38-44.
  • 4Reverberi F.What 2013and beyond holds for SSBR[J].Rubber World,2013,247(4):6-8.
  • 5Serafinska A,Kaliske M,Zopf C,et al.A multi-objective optimization approach with consideration of fuzzy variables applied to structural tire design[J].Computers&Structures,2013,116:7-19.
  • 6Liu Y,Zhang G,Yan H,et al.Simulation on effect of five kinds of belt structures on tire performance[J].Key Engineering Materials,2012,501:151-155.
  • 7Yanjin G,Guoqun Z,Gang C.Influence of belt cord angle on radial tire under different rolling states[J].Journal of Reinforced Plastics and Composites,2006,25(10):1059-1077.
  • 8ISO Technical Committees.ISO 28580:2009 Passenger car,truck and bus tyres-methods of measuring rolling resistance-single point test and correlation of measurement results[S].Geneva Switzerland:The Standards Policy and Committee,2009.
  • 9于增信,肖旺新.轮胎花纹沟泵气噪声模型[J].汽车工程,2008,30(8):692-695. 被引量:11
  • 10王国林,施斌,姬新生,王晨,梁晨.基于人工智能技术的轮胎硫化优化[J].江苏大学学报(自然科学版),2011,32(2):144-147. 被引量:10

共引文献14

同被引文献98

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部