期刊文献+

激光扫描匹配方法研究综述 被引量:57

A survey of laser scan matching methods
下载PDF
导出
摘要 激光扫描匹配是利用激光雷达进行导航、定位与地图构建的基础,本文对各类激光扫描匹配方法进行了综述。将现有方法归纳为基于点的扫描匹配方法、基于特征的扫描匹配方法和基于数学特性的扫描匹配方法 3类,系统总结了相应类型的常见方法;对典型的算法及其改进算法进行了梳理,并指出了存在的主要问题和发展趋势;介绍了激光扫描匹配方法性能评价和对比的最新研究进展,最后,展望了激光扫描匹配技术未来的研究方向。 Laser scan matching is a foundation for navigation,localization and mapping using Light Detection and Ranging(LiDAR).Various laser scan matching methods are reviewed in detail in this paper.The existing methods are divided into three categories:point-based scan matching method,feature-based scan matching method and mathematical property-based scan matching method,and the common algorithms of corresponding categories are summarized systematically.The typical algorithms and their improved algorithms are outlined,the main issues and development trends are discussed.Then,the latest research progress of performance evaluation and comparison of laser scan matching methods is introduced.Finally,the future research directions of laser scan matching technology are prospected.
作者 宗文鹏 李广云 李明磊 王力 李帅鑫 ZONG Wen-peng;LI Guang-yun;LI Ming-lei;WANG Li;LI Shuai-xin(Information Engineering University,Zhengzhou 450001,China)
机构地区 信息工程大学
出处 《中国光学》 EI CAS CSCD 北大核心 2018年第6期914-930,共17页 Chinese Optics
基金 国家自然科学基金项目(No.41274014 No.41501491)~~
关键词 激光扫描匹配 点云配准 同步定位与地图构建 激光雷达 laser scan matching point cloud registration SLAM LiDAR
  • 相关文献

参考文献4

二级参考文献168

  • 1Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. The essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108.
  • 2Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Re- search, 1986, 5(4): 56-68.
  • 3Thrun S, Liu Y F, Koller D, et al. Simultaneous localization and mapping with sparse extended information filters[J]. Inter- national Journal of Robotics Research, 2004, 23(7/8): 693-716.
  • 4Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping prob- lem[C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2002: 593-598.
  • 5Thrun S. Robotic mapping: A survey[M]//Exploring Artificial Intelligence in the New Millennium. San Francisco, USA: Mor- gan Kaufmann, 2002: 1-35.
  • 6Huang S D, Dissanayake G. Convergence and consistency anal- ysis for extended Kalman filter based SLAM[J]. IEEE Transac- tions on Robotics, 2007, 23(5): 1036-1049.
  • 7Thrun S, Burgard W, Fox D. Probabilistic robotics[M]. Cam- bridge, USA: MIT Press, 2005.
  • 8Thrun S, Montemerlo M. The graph SLAM algorithm with ap- plications to large-scale mapping of urban structures[J]. Inter- national Journal of Robotics Research, 2006, 25(5/6): 403-429.
  • 9Frese U, Larsson P, Duckett T. A multilevel relaxation algorithm for simultaneous localization and mapping[J]. /EEE Transac- tions on Robotics, 2005, 21(2): 196-207.
  • 10Olson E, Leonard J, Teller S. Fast iterative alignment of pose graphs with poor initial estimates[C]/flEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2006: 2262-2269.

共引文献135

同被引文献443

引证文献57

二级引证文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部