期刊文献+

基于卡尔曼滤波与粒子滤波的SLAM研究综述 被引量:16

SLAM Research Based on Kalman Filter and Particle Filter
下载PDF
导出
摘要 同时定位与地图构建(SLAM)问题在移动机器人研究领域受到了广泛关注,其是机器人能否实现完全自主运动功能的关键。首先阐述了SLAM系统相关模型,并介绍了经典卡尔曼滤波相关知识;其次介绍基于扩展卡尔曼滤波、无迹卡尔曼滤波与粒子滤波的SLAM算法如何解决现实世界的非线性、非高斯问题,并总结了各算法优缺点;最后,展望了基于卡尔曼滤波的SLAM算法发展趋势。 The problem of simultaneous localization and mapping(SLAM)in the field of mobile robotics is getting more and more attention,which is regarded as the key technology to the robot's ability to achieve fully autonomous motion functions.first of all,this article elaborates the relevant models of SLAM system,and introduces the related knowledge of classical Kalman filter.Secondly,the SLAM algorithm based on extended Kalman filter,unscented Kalman filter and particle filter is introduced to solve the nonlinear and non-Gaussian problems in the real world.The advantages and disadvantages of each algorithm are summarized.Finally,the development trend of SLAM algorithm based on Kalman filter is forecasted.
作者 孙海波 童紫原 唐守锋 童敏明 纪玉明 SUN Hai-bo;TONG Zi-yuan;TANG Shou-feng;TONG Min-ming;JI Yu-ming(School of Information and Control Engineering, China University of Mining and Technology,Xuzhou 221000,China;School of Information and Electrical Engineering,University of New South Wales, Sydney2052,Australia;Xuzhou Hanlin Technology Co. LTD,Xuzhou 221000,China)
出处 《软件导刊》 2018年第12期1-3,7,共4页 Software Guide
基金 国家重点研发计划项目(2016YFC0801800)
关键词 SLAM 卡尔曼滤波 扩展卡尔曼滤波 无迹卡尔曼滤波 粒子滤波 SLAM Kalman filter unscented Kalman filter particle filter
  • 相关文献

参考文献5

二级参考文献40

  • 1郝凯,孟正大.基于卡尔曼滤波的室内服务机器人定位[J].华中科技大学学报(自然科学版),2008,36(S1):193-195. 被引量:4
  • 2何友,关欣,王国宏.多传感器信息融合研究进展与展望[J].宇航学报,2005,26(4):524-530. 被引量:61
  • 3罗真,曹其新.基于视觉和里程计信息融合的移动机器人自定位[J].机器人,2006,28(3):344-349. 被引量:4
  • 4曾慧,吴福朝,胡占义.基于平面激光测量的移动机器人自定位方法[J].自动化学报,2007,33(2):138-144. 被引量:6
  • 5[1]Nicholas Pears, Penelope Probert. An Optical Range Sensor for Mobile Robot Guidance. IEEE Int Conf on R&A 1995
  • 6[2]Pears N E, Probert P J. Active Triangulation Range Finder Design for Mobile Robots. In Proc IEEE Workshop onIntelligent Robots and Systems, 1992: 2047-2052
  • 7[3]Rioux M. Laser Range Finder Based on Synchronized Scanners. Applied Optics, 1984,23(21):3837-3844
  • 8PAPAVASILIOU A. Adaptive particle filters with applications [ D ]. Department of Applied and Computational Mathematics, University of Princeton, USA, 2002.
  • 9KITAGAWA G. Monte Carlo filter and smoother for non- gaussian nonlinear state space models [ J ]. Journal of Computational and Graphical Statistics, 1996(5 ) :1-25.
  • 10MORELANDE M R, CHALLA S, GORDON N. A study of the application of particle filters to single target tracking problem [ J]. Signal and Data Processing of Small Target, 2003(5204) : 211 -222.

共引文献69

同被引文献139

引证文献16

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部