期刊文献+

基于迁移学习的图像检索算法 被引量:12

Image Retrieval Algorithm Based on Transfer Learning
下载PDF
导出
摘要 近年来,随着互联网的发展和智能设备的普及,网络上存储的图片数量呈现爆发式增长,同时,不同类型的社交网络、媒体的用户数量也连续增长。在这种情况下,网络上的多媒体数据类型也发生了变革,在包含其本身携带的视觉信息的同时,也包含用户为其设定的标签信息、文本信息。在这种多模态信息杂糅的环境下,如何向用户提供快速准确的图像检索结果,是多媒体检索领域的一个新挑战。文中提出了一种基于迁移学习的图像检索算法,在对图像的视觉信息进行学习的同时,也对图像的文本信息进行学习,并将学习到的结果迁移到视觉信息领域,进行跨模态信息融合,进而产生包含跨模态信息的图像特征。经实验证明,所提算法能够实现更优的图像检索结果。 In recent years,with the development of the Internet and the popularity of smart devices,the number of online store image is explosively growing.At the same time,the number of users who use different types of social networks and media continues to grow.In this case,the multimedia data type that the user uploaded to the network also has changed,the image uploaded by the user contains the visual information that is carried by the image itself,and also contains the label information and text information that the user sets for it.Therefore,how to provide fast and accurate image retrieval results to users is a new challenge in the field of multimedia retrieval.This paper proposed an image retrieval algorithm based on transfer learning.It learns the visual information and the text information at the same time,then migrates the results learnt to the visual information domain,and thus the feature contains cross modal information.Experimental results show that the proposed algorithm can achieve better image retrieval results.
作者 李晓雨 聂秀山 崔超然 蹇木伟 尹义龙 LI Xiao-yu;NIE Xiu-shan;CUI Chao-ran;JIAN Mu-wei;YIN Yi-long(School of Computer Science and Technology,Shandong University of Finance and Economics,Jinan 250014,China;School of Software,Shandong University,Jinan 250014,China)
出处 《计算机科学》 CSCD 北大核心 2019年第1期73-77,共5页 Computer Science
基金 山东高等学校科技计划项目(JI7KB161) 国家自然科学基金(61671274) 中国博士后基金(2016M592190) 山东省高等学校优势学科人才团队培育计划 山东财经大学研究生教育创新计划(SCY1604)资助
关键词 图像检索 跨模态 迁移学习 特征提取 Image retrieval Cross-modal Transfer learning Feature extraction
  • 相关文献

参考文献3

二级参考文献20

  • 1刘宝生,闫莉萍,周东华.几种经典相似性度量的比较研究[J].计算机应用研究,2006,23(11):1-3. 被引量:44
  • 2G. Cross, A. Jain, Markov random fields texture models,IEEE Trans. Systems Man Cybemet, SMC-17(1987):1087-1095.
  • 3L. S. Davis, Polarograms: a new tool for texture analysis,Pattern Recognition, 13 (1981 ):219-223.
  • 4A. Sarkar, K. M. S. Sharma, R. V. Sonak, A new approach for subset 2-D AR model identification for Describing textures, IEEE Trans. Image Processing, 6(3)(1997): 407-413.
  • 5A. Bovik, M. Clark, and W. Geisler, Multi-channel texture analysis using localized spatial filters, IEEE Trans.On PAMI., vol.12, pp.55-73, Jan., 1990.
  • 6A. E Pentland, Fractal-based description of natural scenes.IEEE Trans. PAMI-6(1984):661-674.
  • 7Li Wang and D. C. He, Texture Classification Using Texture Spectrum, Pattern Recognition 1990(23): 905-910.
  • 8Dong-Chen He and Li Wang, Texture Features Based on Texture Spectrum, Pattern Recognition 1991(24): 391-399.
  • 9Hui Yu, Mingjing Li, Hong-Jiang Zhang, Jufu Feng,Color Texture Moments For Content Based Image Retrieval,www.cs.iupui.edu/~tuceryan/research/Computer Vision/moment-paper.pdf.
  • 10F. Zhou, J. Feng, Q. Shi, "Image Segmentation Based on Local Fourier Coefficients Histogram", Proc. SPIE 2nd Int. Conf. on Multispectral Image Processing and Pattern Recognition, Wuhan, China, November, 2001.

共引文献12

同被引文献73

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部