期刊文献+

基于SARIMA模型的铁路月度客运量预测 被引量:19

Monthly Railway Passenger Traffic Volume Forecasting Based on SARIMA Model
下载PDF
导出
摘要 铁路月度客运量数据序列在长期内具有线性增长趋势,且在短期内又随月份波动变化明显。本文通过构建季节差分移动自回归模型(SARIMA)对2016年铁路月度客运量进行精确预测,挖掘铁路月度客运量的季节性波动规律,为铁路客运管理人员调整列车运行图,制定客车开行方案提供重要参考,以便于铁路客运站确定客流高峰预警时间和提高客运组织效率。 The data sequence of monthly railway passenger traffic volume exhibits a trend of linear growth in the long term, but it fluctuates significantly with the month in the short term. This study uses the SARIMA model to accurately predict monthly railway passenger traffic volume for 2016 and determine the seasonal fluctuations in monthly traffic, which can provide an important reference for the railway department in adjusting train diagrams and planning passenger trains. It can also help railway terminal staff know passenger peak times in advance, and can improve the efficiency of railway passenger transport organizations.
作者 汤银英 朱星龙 李龙 TANG Yin-ying;ZHU Xing-Long;LI Long(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 610031,China;National United Engineering Laboratory of Integrated and Intelligent Transportation,Chengdu 610031,China)
出处 《交通运输工程与信息学报》 2019年第1期25-32,共8页 Journal of Transportation Engineering and Information
关键词 铁路 客运量 SARIMA模型 预测 railway passenger traffic volume SARIMA model forecasting
  • 相关文献

参考文献7

二级参考文献34

共引文献94

同被引文献141

引证文献19

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部