期刊文献+

基于局部线性嵌入与差分进化的MOEA/D算法 被引量:1

MOEA/D Algorithm Based on Locally Linear Embedding and Differential Evolution
下载PDF
导出
摘要 针对基于分解的多目标进化算法选择压力低、收敛速度慢的问题,提出一种局部线性嵌入(LLE)差分进化算法。根据LLE特性降低种群目标空间维数,利用快速非支配排序对种群分支配解进行分层,进而通过差分进化操作提高种群收敛速度。实验结果表明,与dMOPSO算法相比,该算法在保证多样性的同时具有较高的选择压力和较快的收敛速度。 Aiming at the problem of low selection pressure and slow convergence speed for multi-objective evolutionary algorithm based on decomposition,a Local Linear Embedding(LLE)Differential Evolution(DE)algorithm is proposed.According to LLE feature,the spatial dimension of the population target is reduced,and the population bifurcation solution is layered by fast non-dominated sorting,and then the population convergence speed is improved by differential evolution operation.Experimental results show that compared with dMOPSO algorithm,the algorithm has a higher selection pressure and faster convergence speed while ensuring diversity.
作者 耿焕同 周利发 丁洋洋 周山胜 GENG Huantong;ZHOU Lifa;DING Yangyang;ZHOU Shansheng(School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第3期162-168,共7页 Computer Engineering
基金 国家重点研发计划(2017YFC1502104) 江苏省自然科学基金(BK20151458)
关键词 局部线性嵌入 差分进化 进化算子 高维 多目标进化算法 Locally Linear Embedding(LLE) Differential Evolution(DE) evolutionary operator high dimensionality Multi-Objective Evolutionary Algorithm(MOEA)
  • 相关文献

参考文献2

二级参考文献32

  • 1Deb K. MultSObieetive Optimization Using Evolutionary Algorithms [M]. New York: Wiley Press, 2001.
  • 2Beume N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjeedve selection based on dominated hypervolume [J]. European Journal of Operational Research, 2007, 181 (3) : 1653-1669.
  • 3Li Miqing, Yang Shengxiang, Zheng Jinhua, et al. ETEA.- A Euclidean minimum spanning tree based evolutionary algorithm for multiobiective optimization [J]. Evolutionary Computation, 2014, 22(2): 189-230.
  • 4Li Miqing, Yang Shengxiang, Liu Xiaohui. Shift-based density estimation for Pareto-based algorithms in many objective optimization [J]. IEEE Trans on Evolutionary Computation, 2014, 18(3): 348-365.
  • 5Li Miqing, Yang Shengxiang, Liu Xiaohui. A test problem for visual investigation of high-dimensional multi-objective search [C] //Proc of 2014 IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2014:2140-2147.
  • 6Gupta A, Kelly !P, Ehrgott M, et al. Applying biqevel multi-obiective evolutionary algorithms for optimizing composites manufacturing processes [G] //LNCS 7811: Evolutionary Multi Criterion Optimization. Berlin: Springer, 2013:615-627.
  • 7Zhang Y, Li H Y, Niranian M, et al. Applying cost- sensitive multiobjective genetic programming to feature extraction for spare e-mail filtering [G]//Genetic Programming. Berlin: Springer, 2008:326-336.
  • 8Gonzdle:dlvarez D L, Vega-Rodroguez M A, G6mez-Pulido J A, et al. Applying a multiobjective gravitational search algorithm (MO GSA) to discover motifs [G] //Advances in Computational Intelligence. Berlin: Springer, 2011:372-379.
  • 9Ghannadpour S F, Noori S, Tavakkoli-Moghaddam R, et al. A multi-objective dynamic vehicle routing problem with fuzzy time windows: Model, solution and application [J]. Applied Soft Computing, 2014, 14:504-527.
  • 10Murata T, Ishibuehi H, Gen M. Specification of genetic search directions in cellular multi-objective genetic algorithms [G] //LNCS 1993: Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2001:82-95.

共引文献9

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部