期刊文献+

基于随机森林的全国第三次土地调查面向对象分类方法研究 被引量:2

Research on Object-Oriented Classification Method of the Third National Land Survey Based on Random Forest
下载PDF
导出
摘要 全国第三次土地调查内业当中要求作业员将不同地物进行分类,常用的方法是在Arcgis中对地物进行手动勾绘,此操作对作业员的目视解译要求较高且费时费力。基于此本文提出利用面向对象的随机森林方法对研究区进行分类。首先通过选择最优分割尺度与影像特征,再利用随机森林进行分类得到分类结果,并与面向对象的最近邻分类方法进行对比,结果表明:随机森林的总体分类精度为89%,比面向对象提高了4%,随机森林的Kappa系数为0.74,比面向对象提高了0.09。因此利用随机森林分类方法更适合第三次全国土地调查的分类。
作者 王舒 李岩 Wang Shu;Li Yan
出处 《甘肃科技》 2019年第3期141-144,共4页 Gansu Science and Technology
  • 相关文献

参考文献6

二级参考文献79

  • 1王娇,程维明,周成虎.全月球撞击坑识别、分类及空间分布[J].地理科学进展,2015,34(3):330-339. 被引量:10
  • 2Renaud Mathieu, Claire Freeman, Jagannath Ary- al. Mapping private gardens in urban areas using object-o- riented techniques and very high-resolution satellite imagery [J] . Landscape and Urban Planning, 2007, 81(3) .
  • 3MAURO C, EUFEMIA T. Accuracy Assessment of Per- Field Classification Integrating Very Fine Spatial Resolution Satellite Imagery with Topographic Data [ J ] . Journal of Geospatial Engineering, 2001, 3(2) : 127-134.
  • 4谭衢霖,刘正军,沈伟.一种面向对象的遥感影像多尺度分割方法[J].北京交通大学学报,2007,31(4):111-114. 被引量:72
  • 5Haala N, Brenner C. Extraction of Buildings andTrees in Urban Environments [J ]. ISPRS Journalof Photogrammetry and Remote Sensing,1999,54(2) : 130-137.
  • 6Stassopoulou A, Caelli T. Building Detection UsingBayesian Networks [ J]. International J ournal ofPattern Recognition and Artificial Intelligence,2000, 14(6) : 715-733.
  • 7Rottensteiner F,Trinder J, Clode S,et al. Usingthe Dempster-Shafer Method for the Fusion of Li-DAR Data and Multi-spectral Images for BuildingDetection[J]. Information Fusion . 2005, 6(4)-283-300.
  • 8Ducic V,Hollaus M,Ullrich A,et al. 3D Vegeta-tion Mapping and Classification Using Full-wave-form Laser Scanning [ C ]. EARSel and ISPRSWorkshop on 3D Remote Sensing in Forestry, Vi-enna, Austria, 2006.
  • 9Mallet C,Bretar F,Soergel U. Analysis of Full-waveform LiDAR Data for Classification of UrbanAreas[J]. Photo gramme trie Fernerkundung Geoln-formation (PFG),2008,5 : 337-349.
  • 10Chehata N, Guo L, Mallet C. Airborne LiDARFeature Selection for Urban Classification UsingRandom Forests[J]. International Archives of thePhotogrammetry,Remote Sensing and Spatial In-formation Sciences,2009,39(3/W8) : 207-212.

共引文献131

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部