期刊文献+

无线网络海量用户信息智能校验仿真研究 被引量:2

Simulation Research on Intelligent Verification of Massive User Information in Wireless Networks
下载PDF
导出
摘要 当前网络用户信息校验方法存在准确性差、校验效率低的问题,提出基于时间同步过滤的无线网络海量用户信息智能校验方法。在无线网络中设置一个等价关系族,随机在关系族中选取一个参量,利用约简判定公式对选取参量是否能够在等价关系族中被约简进行判断,实现无线网络冗余信息数据的处理。依据信息约简在网络中的实际应用,给出正域定义,在正域中完成网络信息属性权重的划分。利用权重的确定,给出无线网络信息数据聚类距离公式,实现网络信息数据样本层次聚类。将网络信息处理结果代入信息数据校验中,通过无线网络信息数据预测区间对新信息数据点为异常数据点与否进行校验,假设新信息数据点在预测区间,则说明该信息数据为正常数据。假设新信息数据点不在预测区间,则说明该信息数据不为正常数据,对所得异常数据进行处理。实验结果表明,所提方法具有较高的信息校验精度,校验耗时短,校验效率较高。 The current network user information verification method has the problems of poor accuracy and low verification efficiency.A method for intelligent verification of massive user information based on time synchronization filtering is proposed.In the wireless network,an equivalence relation family is set up,and a parameter is randomly selected in the relationship family.The reduction decision formula is used to judge whether the selected parameter can be reduced in the equivalence relation family,and the wireless network redundant information data is realized.deal with.According to the practical application of information reduction in the network,the positive domain definition is given,and the weight division of network information attributes is completed in the positive domain.Using the determination of weights,the clustering distance formula of wireless network information data is given,and the hierarchical clustering of network information data samples is realized.Substitute the network information processing result into the information data check,and check whether the new information data point is abnormal data point or not by the wireless network information data prediction interval,and assume that the new information data point is in the prediction interval,indicating that the information data is normal.Data;assuming that the new information data point is not in the prediction interval,it indicates that the information data is not normal data,and the obtained abnormal data is processed.The experimental results show that the proposed method has higher accuracy of information verification,shorter verification time and higher verification efficiency.
作者 李丽蓉 LI Li-rong(Shanxi Police college,Taiyuan Shanxi 030401,China)
机构地区 山西警察学院
出处 《计算机仿真》 北大核心 2019年第5期341-344,365,共5页 Computer Simulation
基金 山西省"1331工程"重点学科建设计划经费资助项目(1331KSC)
关键词 无线网络 用户信息 校验 Wireless network User Information Check
  • 相关文献

参考文献10

二级参考文献81

  • 1OLOF Sderstrm,ESMIRALDA Moradian.Secure audit log management[J].Procedia Computer Science,2013,22:1249-1258.
  • 2LI Zhuo,ZHEN Wang.Research and implementation of log-based network security audit system[J].Energy Procedia,2011,11:2021-2060.
  • 3LASSMANN T,SONNHAMMER E L.Kalign-anaccurate and fast multiple sequence alignment algorithm[J].BMC Bioinformatics,2005,6:298.
  • 4ALI Khwaldeh,AMANI Tahat,JORDI Marti,et al.Atomicdata mining numerical methods,source code lite with thon[J].Procedia-Social and Behavioral Sciences,2013,73:232-239.
  • 5AHO A,CORASICK M.Efficient string matching:An aid to bibliographic search[J].Communications of the ACM,1975,18(6):333-343.
  • 6HOU Zhengfeng,SHU Yindong,HAN Jianghong,et al.The study and improvement of AC_BM multi-pattern matching algorithm[J].Energy Procedia,2011,13:36-42.
  • 7WANG Jianping,CHEN Min,WU Xianwen.A novel network attack audit system based on multi-agent technology[J].Physics Procedia,2012,25:2152-2157.
  • 8LAM S K,YEONG C Y,YEW C T,et al.A study on similarity computations in template matching technique for identity verification[J].International Journal on Computer Science and Engineering,2010,2(8):2659-2665.
  • 9Zhang Jiayao.CAPTCHA recognition using machinelearning[EB/OL].[2016-01-06].http://hdl.handle.net/2031/8227.
  • 10Lu P,Shan L,Li J,et al.A new segmentation method forconnected characters in CAPTCHA[C].2015 InternationalConference on Control,Automation and Information Sciences(ICCAIS),2015:128-131.

共引文献133

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部