期刊文献+

时标上具有分布势函数的Sturm-Liouville问题的矩阵表示 被引量:1

Matrix Representations of Sturm-Liouville Problems with Distribution Potentials on Time Scales
下载PDF
导出
摘要 本文讨论时标上具有分布势函数的二阶Sturm-Liouville问题的矩阵表示.通过分析得出所研究的具有分布势函数的Sturm-Liouville问题与一类矩阵特征值问题之间的等价关系.文章针对分离型和实耦合型自共轭边界条件分别进行了讨论. The matrix representations of second order Sturm-Liouville problems with distribution potentials on bounded time scales are investigated. The corresponding equivalences between Sturm- Liouville problems with distribution potentials on time scales and a certain kind of matrix eigenvalue problems are obtained. Both of the separated and coupled self-adjoint boundary conditions are considered to obtain the main results.
作者 刘娜娜 敖继军 LIU Nana;AO Jijun(College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China)
出处 《应用数学》 CSCD 北大核心 2019年第3期515-524,共10页 Mathematica Applicata
基金 国家自然科学基金资助项目(11661059,11301259) 内蒙古自然科学基金项目(2017JQ07)
关键词 STURM-LIOUVILLE问题 时标 分布势函数 矩阵表示 Atkinson 类型 Sturm-Liouville problem Time scale Distribution potential Matrix representation Atkinson type
  • 相关文献

参考文献3

二级参考文献15

  • 1AGARWAL R P, BOHNER M, WONG P J Y. Sturm-Liouville eigenvalue problems on time scales [ J ]. Appl Math Comput, 1999, 99 : 153-166.
  • 2KONG Q. Sturm-Liouville eigenvalue problems on time scales with separated boundary conditions [ J ] Result Math, 2008, 52:111-121.
  • 3ZHANG C, YANG D. Eigenvalues of second-order linear equations with coupled boundary conditions on time scales [ J]. J Appl Math Comput, 2010, 33 : 1-21.
  • 4AO Ji-jun, SUN Jiong, ZHANG Mao-zhu. The finite specturm of Sturm-Liouvolle problems with transmission conditions [ J]. App| Math Comput, 2011, 218 : 1166-1173.
  • 5ZETTLE A. Sturm-Liouville Theory[ M]. United States of America: Math Surveys Monogr, Amer Math Soc, 2005.
  • 6BOHNER M, PETERSON A. Dynamic Equations on time scales[ M]. Birkhiuser, Boston, 2001.
  • 7Guo D J,Lakshmikantham V. Nonlinear Problems in Abstract Cones[A].Boston-Mass:Academic Press,1988.
  • 8Bai Z B,Du Z J. Positive solutions for some second-order four-point boundary value problems[J].Journal of Mathematical Analysis and Applications,2007.34-50.
  • 9Bai Z B,Ge W G,Wang Y F. Multiplicity results for some second-order four-point boundary value problems[J].Nonlinear Analysis,2005.491-500.
  • 10Bai C Z,Xie D P,Liu Y,Wang C L. Positive solutions for second-order four-point boundary value problems with alternating coefficient[J].Nonlinear Analysis,2009.2014-2023.

共引文献3

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部