摘要
本文讨论时标上具有分布势函数的二阶Sturm-Liouville问题的矩阵表示.通过分析得出所研究的具有分布势函数的Sturm-Liouville问题与一类矩阵特征值问题之间的等价关系.文章针对分离型和实耦合型自共轭边界条件分别进行了讨论.
The matrix representations of second order Sturm-Liouville problems with distribution potentials on bounded time scales are investigated. The corresponding equivalences between Sturm- Liouville problems with distribution potentials on time scales and a certain kind of matrix eigenvalue problems are obtained. Both of the separated and coupled self-adjoint boundary conditions are considered to obtain the main results.
作者
刘娜娜
敖继军
LIU Nana;AO Jijun(College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China)
出处
《应用数学》
CSCD
北大核心
2019年第3期515-524,共10页
Mathematica Applicata
基金
国家自然科学基金资助项目(11661059,11301259)
内蒙古自然科学基金项目(2017JQ07)