期刊文献+

基于一维卷积混合神经网络的文本情感分类 被引量:6

Text sentiment classification based on 1D convolutional hybrid neural network
下载PDF
导出
摘要 针对情感分类中传统二维卷积模型对特征语义信息的损耗以及时序特征表达能力匮乏的问题,提出了一种基于一维卷积神经网络(CNN)和循环神经网络(RNN)的混合模型。首先,使用一维卷积替换二维卷积以保留更丰富的局部语义特征;再由池化层降维后进入循环神经网络层,整合特征之间的时序关系;最后,经过softmax层实现情感分类。在多个标准英文数据集上的实验结果表明,所提模型在SST和MR数据集上的分类准确率与传统统计方法和端到端深度学习方法相比有1至3个百分点的提升,而对网络各组成部分的分析验证了一维卷积和循环神经网络的引入有助于提升分类准确率。 Traditional 2D convolutional models suffer from loss of semantic information and lack of sequential feature expression ability in sentiment classification. Aiming at these problems,a hybrid model based on 1D Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) was proposed. Firstly,2D convolution was replaced by 1D convolution to retain richer local semantic features. Then,a pooling layer was used to reduce data dimension and the output was put into the recurrent neural network layer to extract sequential information between the features. Finally,softmax layer was used to realize the sentiment classification. The experimental results on multiple standard English datasets show that the proposed model has 1-3 percentage points improvement in classification accuracy compared with traditional statistical method and end-to-end deep learning method. Analysis of each component of network verifies the value of introduction of 1D convolution and recurrent neural network for better classification accuracy.
作者 陈郑淏 冯翱 何嘉 CHEN Zhenghao;FENG Ao;HE Jia(School of Computer Science,Chengdu University of Information Technology,Chengdu Sichuan 610225,China)
出处 《计算机应用》 CSCD 北大核心 2019年第7期1936-1941,共6页 journal of Computer Applications
基金 四川省科技厅应用基础重点项目(2017JY0011)~~
关键词 情感分类 卷积神经网络 循环神经网络 词向量 深度学习 sentiment classification Convolutional Neural Network (CNN) Recurrent Neural Network (RNN) word embedding deep learning
  • 相关文献

参考文献2

二级参考文献32

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2LIU B, HU M, CHENG J. Opinion observer: Analyzing and comparing opinions on the Web[ C]// Proceedings of the 14th International Conference on World Wide Web: WWW 2005. New York: ACM Press, 2005:342 - 351.
  • 3PANG B, LEE L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts[ C]// Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Morristown, N J, USA: Association for Computational Linguistics, 2004:271 -278.
  • 4YU H, HATZIVASSILOGLOU V. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences[ C]// Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Morristown, N J, USA: Association for Computational Linguistics. 2003:129 - 136.
  • 5WILSON T, HOFFMANN P, SOMASUNDARAN S, et al. Opinion-Finder: A system for subjectivity analysis[ C]// Proceedings of the 2005 Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. Morristown. NJ, USA: Association for Computational Linguistics. 2005: 34-35.
  • 6DAVE K, LAWRENCE S, DPENNOCK M. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews[ C]// Proceedings of the 12th International Conference on World Wide Web. New York: ACM Press, 2003:519-528.
  • 7NASUKAWA T, YI J. Sentiment analysis: Capturing favorability using natural language processing[C]//Proceedings of the 2nd International Conference on Knowledge Capture. New York: ACM Press, 2003:70-77.
  • 8HU M, LIU B. Mining opinion features in customer reviews[ C]// Proceedings of the 19th National Conference on Artificial Intelligence: AAAI 2004. Menlo Park, California: AAAI Press, 2004: 755 - 760.
  • 9HU M, LIU B. Mining and summarizing customer reviews[ C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining. New York: ACM Press, 2004:168 - 177.
  • 10JINDAL N, LIU B. Identifying comparative sentences in text documents[ C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2006:244-251.

共引文献592

同被引文献49

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部