期刊文献+

基于特征融合的改进LCT跟踪算法 被引量:3

Improved LCT Tracking Algorithm Based on Feature Fusion
下载PDF
导出
摘要 为解决LCT算法在目标形变与快速移动情况下跟踪效果差的问题,提出一种基于特征融合的跟踪算法。在梯度方向直方图特征相关滤波的基础上,提取目标与背景颜色直方图特征,得到颜色特征的目标预测位置。在此基础上,根据跟踪置信度确定特征融合权重,综合考虑梯度特征与颜色特征得到跟踪结果。实验结果证明,与LCT算法相比,该算法的距离精度和重叠精度分别提高了11.5 %和21.2 %,平均中心位置误差减少了15.3像素。 To address the poor tracking performance of the LCT algorithm when the target is in deformation or fast moving,a tracking algorithm based on feature fusion is proposed.Based on the Histogram of Oriented Gradient(HOG) feature correlation filtering,the target and background color histogram features are extracted to obtain the target prediction position of the color feature.On the basis,the feature fusion weight is determined according to the tracking confidence.Tracking results are obtained by considering gradient features and color features.Experimental results show that compared with the LCT algorithm,the distance accuracy and overlap accuracy of the algorithm are increased by 11.5 % and 21.2 %,respectively,and the average center position error is reduced by 15.3 pixels.
作者 官洪运 欧阳江坤 杨益伟 吴炜 GUAN Hongyun;OUYANG Jiangkun;YANG Yiwei;WU Wei(College of Information Science and Technology,Donghua University,Shanghai 201620,China;Engineering Research Center of Digitalized Textile and Fashion Technology,Ministry of Education,Donghua University,Shanghai 201620,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第8期241-247,共7页 Computer Engineering
基金 国家自然科学基金(71171045) 上海市教科委创新项目(14YZ130)
关键词 机器视觉 长期目标跟踪 相关滤波 颜色直方图 目标形变 特征融合 machine vision long-term object tracking correlation filtering color histograms target deformation feature fusion
  • 相关文献

参考文献4

二级参考文献236

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 3王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 4Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 5Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 6Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 7Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 8Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 9Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 10Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.

共引文献712

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部