期刊文献+

焊接机器人避障策略研究 被引量:21

Research on Obstacle Avoidance Strategy for Welding Robot
原文传递
导出
摘要 焊接机器人因其高效性在工业生产中得到广泛应用,而碰撞检测关乎机器人安全生产。针对焊接机器人与工件避障的问题,利用栅格法化简环境信息的优势进行建模,利用蚁群算法运算速度快的特点寻求每两个焊点之间的避障路径,从而能够迅速地找到机器人末端和工件之间的无碰撞路径。在机器人与工装夹具避障部分,通过对机器人几何建模、焊点位置选取和姿态正逆解,利用粗略检测和精细检测结合的方法,碰撞检测完成机器人关节与工装夹具之间的避障。最后在考虑到焊枪姿态和工装夹具的条件下,根据姿态相同和焊接时间相近两个原则,利用分组竞争粒子群算法优化机器人焊接时间,实现双焊接机器人焊点划分和路径规划问题,从而实现两个机器人焊接时间最优的目标。 Welding robots are widely used in industrial production because of their high efficiency, and collision detection is related to the safe production of robots. Aiming at the problem of obstacle avoidance between welding robot and workpiece, this paper uses the advantage of grid method to simplify the environment information, and uses the ant colony algorithm to calculate the speed of the obstacle avoidance path between each two solder joints. Find the collision-free path between the end of the robot and the workpiece. In the obstacle avoidance part of robot and fixture, this research uses the combination of rough detection and fine detection by the geometric modeling of the robot, the selection of the welding point position and the forward and reverse solution of the attitude. The collision detection completes the obstacle avoidance between the robot joint and the fixture. Finally, considering the welding gun attitude and fixture, according to the two principles of the same attitude and welding time, the group competitive particle swarm optimization algorithm is used to optimize the welding time of the robot, and the welding point division and path planning of the double welding robot are realized. The robot has the best welding time target.
作者 王学武 汤彬 顾幸生 WANG Xuewu;TANG Bin;GU Xingsheng(Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology, Shanghai 200237)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2019年第17期77-84,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(61773165,61573144)
关键词 避障 路径规划 粒子群算法 栅格法 obstacle avoidance path planning particle swarm algorithm grid method
  • 相关文献

参考文献9

二级参考文献98

共引文献142

同被引文献233

引证文献21

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部