期刊文献+

稀释晶场对spin-1和spin-1/2混合自旋纳米管中 Blume-Capel模型磁化强度的研究

Study on magnetization of Blume-Capel model in spin-1 and spin-1/2 hybrid spin nanotubes by diluting the crystal field
下载PDF
导出
摘要 利用有效场理论研究了纳米管上稀释晶场中混合自旋Blume-Capel模型格点的磁化强度,得到了系统格点的磁化强度与稀释晶场取值概率、外磁场和晶场的关系.结果表明:取值概率、外磁场、交换相互作用和晶场强度等诸多因素相互竞争,使系统表现出比恒定晶场作用的Blume-Capel模型更为丰富的磁学特性;外磁场能够增大系统格点的磁化强度,导致系统的二级相变消失;负晶场的作用使系统发生一级相变;稀释晶场会抑制系统的磁化强度,导致其基态饱和值小于1. The magnetization of the mixed spin Blume-Capel model lattice points in the diluted crystal field on nanotubes was studied by using the effective field theory,and the relationships between the magnetization of the system lattice points and the value probability of the diluted crystal field,the external magnetic field and the crystal field were obtained.The results show that the magnetic properties of the system are more abundant than those of the constant crystal field under the competition of many factors such as value probability,external magnetic field,exchange interaction and crystal field strength.The external magnetic field can increase the magnetization intensity of the lattice points of the system,resulting in the disappearance of the second-order phase transition of the system.The negative crystal field makes the system undergo a phase transition.Diluting the crystal field will inhibit the magnetization of the system,resulting in its ground state saturation value less than 1.
作者 李晓杰 王渺渺 唐顺磊 董明慧 LI Xiao-Jie;WANG Miao-Miao;TANG Shun-Lei;DONG Ming-Hui(Qilu Institute of Technology,Jinan,250200)
机构地区 齐鲁理工学院
出处 《原子与分子物理学报》 CAS 北大核心 2019年第5期781-788,共8页 Journal of Atomic and Molecular Physics
基金 齐鲁理工学院校级课题(JG201858)
关键词 外磁场 磁化强度 有效场理论 BLUME-CAPEL模型 纳米管 External magnetic field Magnetization Effective field theory Blume-Capel model Nanotube
  • 相关文献

参考文献5

二级参考文献64

  • 1许玲,晏世雷.横向随机晶场Ising模型的相图和磁化行为研究[J].物理学报,2007,56(3):1691-1696. 被引量:5
  • 2Cakan R D, Hu Y S, Antonietti M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chemistry of Materials, 2008, 20(4): 1227-1229.
  • 3Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652-657.
  • 4Liu Z, Zhang D, Han S, et al. Laser ablation synthesis and elec- tronic transport studies of tin oxide nanowires. Advanced Mate- rials, 2003,15(20): 1754-1757.
  • 5Liu Y, Dong J, Liu M. Well-aligned"nano-box-beams"of SnO2. Advanced Materials, 2004,16(4): 353-356.
  • 6Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion bat- teries. Energy Environ. Sci., 2011, 4: 2682-2699.
  • 7Zhang F, Wang K X, Wang X Y, et al.Synthesis of SnO2 hollow nanostructures with controlled interior structures through a tem- plate-assisted hydrothermal route. Dalton Trans., 2011, 40: 8517-8519.
  • 8Wang C, Du G H, St:hl K, et al. Ultrathin SnOz nanosheets: ori- ented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances. Journal of Physical Chemistry C, 2012, 116: 4000-4011.
  • 9Wang C M, Xu W, Liu J, et al. In situ transmission electron mi- croscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett., 2011, 11(5): 1874-1880.
  • 10Li J X, Zhao Y, Wang N, et al. A high performance carrier for SnO2 nanoparticles used in lithium ion battery. Chemical Com- munications, 2011, 47: 5238-5240.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部