期刊文献+

闸机液压旋转机构的混合自适应前馈控制

Hybrid Self-adaption Feedforward Control for Gate Hydraulic Rotating Mechanism
下载PDF
导出
摘要 提出利用液压比例阀进出口两端压差进行参数混合自适应前馈控制的闸机液压旋转机构控制方法。首先介绍系统结构,建立关键液压元器件的数学模型;然后根据前馈控制模型中压差不确定性,给出在无压力传感的情况下,对伺服阀压差进行实时估计的方法和增益调度方式实现压差自适应的方法。随后,提出一种将实时估计与调度增益的自适应参数加权求和的混合方法,获得伺服阀压差作为前馈控制的模型参考。最后进行仿真研究,研究结果表明:在闸机液压旋转门的前馈控制中,混合自适应方法在存在测量误差等噪声干扰的实际工作环境中,可以比自校正和增益调度方式获得更高的位置跟随和速度跟随精度。 This paper proposes gate hydraulic rotating mechanism method for parameter hybrid self-adaption feedforward control with pressure difference at both sides at the entrance and exit of hydraulic pressure proportioning valve. Firstly, this paper introduces system structure, and establishes the mathematical model of key hydraulic components. And then, according to uncertainty of pressure difference in the feedforward control model, real-time estimation method and the gain scheduling mode are presented for servo valve pressure difference to realize pressure difference self-adaption method without pressure sensor. Then, a hybrid method of weighted summation of adaptive parameters with real-time estimation and scheduling gain is proposed, and the servo valve pressure difference is obtained as a model reference for feedforward control. Finally, simulation study is conducted, research results shows that hybrid self-adaption method can obtain higher position and speed following accuracy than self-correction and gain scheduling in real environment with noise interference such as measurement error in feedforward control of gate hydraulic rotating door.
作者 焦大伟 Jiao Dawei(CRSC Communication & Information Group Company Ltd., Beijing 100070, China)
出处 《铁路通信信号工程技术》 2019年第10期40-46,共7页 Railway Signalling & Communication Engineering
关键词 自适应前馈 混合自适应 自校正 增益调度 闸机旋转门 self-adaptive feedforward hybrid adaption self-tuning gain scheduling gate rotating door
  • 相关文献

参考文献6

二级参考文献44

  • 1王鑫,孙力,闫杰.应用复合前馈提高加载系统性能的实验研究[J].系统仿真学报,2004,16(7):1539-1541. 被引量:8
  • 2汪雄海,周旭强,张利华.污水泵站系统的节能机理及控制策略[J].浙江大学学报(工学版),2005,39(7):1068-1071. 被引量:15
  • 3王新民,刘卫国.电液伺服加载的神经网络内部反馈控制[J].航空学报,2007,28(3):690-694. 被引量:13
  • 4YAGI S, SHIBA S. Application of genetical algorithms and fuzzy control to a combined sewer station [-J3. Water Science and Technology, 1999,39 ( 9 ) : 217 - 224.
  • 5CHEN Bor-sen, LEE Ching-hsiang, CHANG Yeong- chan. H^∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach [J]. IEEE Transactions on Fuzzy Systems, 1996, 4(1) : 32 -43.
  • 6HAWWARY M I, ELSHAFEI A L, EMARA H, et al. Output feedback control of a class of nonlinear systems using direct adaptive fuzzy controller[J]. IEE Proceedings- Control Theory and Applications, 2004, 151(5) :615 - 625.
  • 7ZHANG Tian-ping,GU Hai-jun, YU Jian-jiang. Direct adaptive fuzzy control for a class of nonlinear systems [C]///Proceedings of the 2nd International Conference on Machine Learning and Cybernetics. Portugal: [s. n. ], 2003:620 - 624.
  • 8RUBAAI A. Direct adaptive fuzzy control design achieving tracking for high performance servo drives[J]. IEEE Transactions on Energy conversion, 1999, 14(4): 1119 - 1208.
  • 9CHANG Yeong-chan. Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H^∞ ap proaches[J].IEEE Transactions on Fuzzy Systems, 2001, 9(2) :278 -292.
  • 10HOSSEINZADEH N,KALAM A. Direct adaptive fuzzy power system stabilizer[J]. IEEE Transactions on Energy Conversion, 1999, 14(4):1564 - 1571.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部