期刊文献+

相关测度与增量式支持度和信任度的计算 被引量:8

Correlativity Measure and Incremental Computation of Support and Confidence
下载PDF
导出
摘要 通过相关测度的定义,从理论上探讨了增量式规则发现问题,并把分类规则挖掘和关联规则挖掘联系起来进行研究,为该问题的深入研究奠定了理论基础.相关测度刻画了给定关系和相关集合的数字特征.对相关测度的概念、定义、性质以及与支持度和信任度的关系等方面作了详细的分析和探讨,给出了基于相关集合的支持度和信任度的定义及计算方法.证明了测度增量定理和支持度增量定理,并给出了增量式支持度和信任度的计算公式.另外还详细地分析了数据增量对关联规则和信任度的影响,探讨了基于新支持度的候选项的修剪问题.所提出的相关测度及其思想为研究既能用于分类规则又能用于关联规则的统一数据挖掘方法提供了有价值的新思路. By defining the correlativity measure, the problem of incremental discovering association rule is discussed in theory, and the mining association rule and the mining classification rule are combined to research, which establishes the theoretical foundations for researching the problem in detail. The correlativity measure depicts the numeral character of given relation and mutuality set. The conception, the definition and the properties of the proposed correlativity measure, and the relation between support and confidence are analyzed and discussed in detail. The new definition, methods of computing support, and the confidence based on mutuality set are proposed. The incremental computing formulas of support and confidence are given, and incremental theorems of support and confidence are also proved. On the side, the influences of incremental data upon association rules and the confidence are analyzed in detail. The problem of pruning candidate frequent item set based on new support is also discussed. The correlativity measure and its idea proposed in this paper provide a new valuable way for studying a unification method for mining classification rules and associate rules from database.
出处 《软件学报》 EI CSCD 北大核心 2002年第11期2208-2214,共7页 Journal of Software
基金 辽宁省自然科学基金资助项目(9910200205) 辽宁省教育厅高校科研基金资助项目(20012073)~~
关键词 相关测度 增量式支持度 信任度 计算 关联规则 数据挖掘 数据库 correlativity measure support confidence associate rules data mining
  • 相关文献

参考文献4

二级参考文献5

共引文献232

同被引文献44

  • 1吕静,王晓峰,Osei Adjei,Fiaz Hussain.序列模式图及其构造算法[J].计算机学报,2004,27(6):782-788. 被引量:16
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1245
  • 3Wang Xiao-feng,Yin Dan-na,Cheng Shi-quan.Mutuality sets[J]. Journal of Shenyang Institute of Chemical Technology,1999,13(3):67-76.
  • 4王晓峰 唐忠.相关集合在数据库知识发现中的应用[J].南京大学学报(计算机专辑),2000,36(11):52-57.
  • 5王晓峰 尹丹娜 郑诗诠.相关集合及其在知识库化简中的应用[J].清华大学学报,1998,(2):6-9.
  • 6Lin D I, Kedem Z M. Pincer-search: A New Algorithm for Discovering the Maximum Frequent Set [C]. In: Proe. of the 6th European Conf. on extending database technology, 1998
  • 7Agrawal R, Imiclinski T, Swami A. Mining association rules between sets of items in large d tabases. In:Proceedings of the ACM SIGMOD Conference on Management of data, 1993. 207-216
  • 8Lin J L, Dunham M H. Mining association rules: Anti skewalgorithms. In: Proceedings of the International Conference on Data Engingeering, Orlando, Florida, February 1998
  • 9Brin S,Motwani R, Ullman J D, et al. Dynamic Itemset counting and implication rules for market basket data. In: ACM SIGMOD International Conference on the Management of Data. 1997
  • 10Roberto J,Bayardo Jr. Eficiently mining long patterns from databases,[C]. In: Proc. of the' 98 ACM-SIGMOD int. Conf. On Management of Data(SIGMOD'98), 1998. 85-93

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部