期刊文献+

基于Doo/Sabin细分的分片光滑曲面重建算法研究

The Reconstruction Algorithm of Piecewise Smooth Surface Based on Doo/Sabin Subdivision
下载PDF
导出
摘要 对于任意拓扑曲面重建,曲面样条是一个比较好的选择。Peters和Hoppe分别对曲面样条进行了理论分析和应用,在对Peters和Hoppe的工作研究和实践中发现可以对算法进行局部改进,并介绍了新算法。 Surface spline is a good alternative to reconstruction surface of arbitrary topology type. Based on theoretical analysis and application made separately by Peters and Hoppe, an algorithm to generalize smooth surface of arbitrary topology type was given.
出处 《机械设计与制造工程》 2002年第6期66-68,共3页 Machine Design and Manufacturing Engineering
基金 江苏省青年科技基金资助项目(BQ2000004)
关键词 细分曲面 曲面样条 Doo/Sabin细分 逆向工程 Subdivision Surface Surface Spline Doo/Sabin Subdivision
  • 引文网络
  • 相关文献

参考文献5

  • 1[1]Jrg Peters.Constructing C1 surfaces of arbitrary topology using biquadratic and bicubic splines [A].N.Sapidis. Designing Fair Curves and Surfaces[C].Philadelphia:SIAM,1994:277-293.
  • 2[2]Jrg Peters.C1-surface splines[J].SIAM Journal on Numerical Analysis,1995,(32)2:645-666.
  • 3[3]Matthias Eck,Hugues Hoppe.Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type[C].New Orleans: Computer Graphics Annual Conference Series,1996:325-334.
  • 4[4]Doo D,Sabin M.Behaviour of recursive division surfaces near extraordinary points[J].CAGD,1978,10(6):356-360.
  • 5[5]Ken Joy. DOO-SABIN SURFACES[DB/OL].http://graphics.cs.ucdavis.edu/CAGDNotes/Doo-Sabin/Doo-Sabin.html,1996-11-07.

相关主题

;
使用帮助 返回顶部